A Likelihood Ratio Detector for Identifying Within-Perimeter Computer Network Attacks

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Sep 1, 2016), p. n/a
Autor principal: Grana, Justin
Altres autors: Wolpert, David, Neil, Joshua, Xie, Dongping, Bhattacharya, Tanmoy, Bent, Russel
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2079558273
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2079558273 
045 0 |b d20160901 
100 1 |a Grana, Justin 
245 1 |a A Likelihood Ratio Detector for Identifying Within-Perimeter Computer Network Attacks 
260 |b Cornell University Library, arXiv.org  |c Sep 1, 2016 
513 |a Working Paper 
520 3 |a The rapid detection of attackers within firewalls of enterprise computer net- works is of paramount importance. Anomaly detectors address this problem by quantifying deviations from baseline statistical models of normal network behav- ior and signaling an intrusion when the observed data deviates significantly from the baseline model. However, many anomaly detectors do not take into account plausible attacker behavior. As a result, anomaly detectors are prone to a large number of false positives due to unusual but benign activity. This paper first in- troduces a stochastic model of attacker behavior which is motivated by real world attacker traversal. Then, we develop a likelihood ratio detector that compares the probability of observed network behavior under normal conditions against the case when an attacker has possibly compromised a subset of hosts within the network. Since the likelihood ratio detector requires integrating over the time each host be- comes compromised, we illustrate how to use Monte Carlo methods to compute the requisite integral. We then present Receiver Operating Characteristic (ROC) curves for various network parameterizations that show for any rate of true posi- tives, the rate of false positives for the likelihood ratio detector is no higher than that of a simple anomaly detector and is often lower. We conclude by demon- strating the superiority of the proposed likelihood ratio detector when the network topologies and parameterizations are extracted from real-world networks. 
653 |a Sensors 
653 |a Detectors 
653 |a Intrusion 
653 |a Firewalls 
653 |a Statistical analysis 
653 |a Statistical models 
653 |a Computer networks 
653 |a Computer simulation 
653 |a Likelihood ratio 
653 |a Network topologies 
653 |a Monte Carlo simulation 
653 |a Cybersecurity 
700 1 |a Wolpert, David 
700 1 |a Neil, Joshua 
700 1 |a Xie, Dongping 
700 1 |a Bhattacharya, Tanmoy 
700 1 |a Bent, Russel 
773 0 |t arXiv.org  |g (Sep 1, 2016), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2079558273/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1609.00104