The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools

Enregistré dans:
Détails bibliographiques
Publié dans:arXiv.org (Jul 18, 2016), p. n/a
Auteur principal: Holst, Michael
Autres auteurs: Sarbach, Olivier, Tiglio, Manuel, Vallisneri, Michele
Publié:
Cornell University Library, arXiv.org
Sujets:
Accès en ligne:Citation/Abstract
Full text outside of ProQuest
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 2079598173
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2079598173 
045 0 |b d20160718 
100 1 |a Holst, Michael 
245 1 |a The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools 
260 |b Cornell University Library, arXiv.org  |c Jul 18, 2016 
513 |a Working Paper 
520 3 |a On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein's prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detection of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole binaries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest, and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science. Our emphasis is on the synergy between these disciplines, and how mathematics, broadly understood, has historically played, and continues to play, a crucial role in the development of GW science. We focus on black holes, which are very pure mathematical solutions of Einstein's gravitational-field equations that are nevertheless realized in Nature, and that provided the first observed signals. 
653 |a Gravitational waves 
653 |a Partial differential equations 
653 |a Black holes 
653 |a Signal processing 
653 |a Data analysis 
653 |a Laser interferometry 
653 |a Binary stars 
653 |a Astronomy 
653 |a Relativity 
653 |a Differential geometry 
653 |a Gravitation theory 
653 |a Numerical analysis 
653 |a Universe 
653 |a Algorithms 
653 |a Statistical inference 
653 |a Coalescing 
700 1 |a Sarbach, Olivier 
700 1 |a Tiglio, Manuel 
700 1 |a Vallisneri, Michele 
773 0 |t arXiv.org  |g (Jul 18, 2016), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2079598173/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1607.05251