Generalized residual vector quantization for large scale data

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Sep 17, 2016), p. n/a
1. Verfasser: Liu, Shicong
Weitere Verfasser: Shao, Junru, Lu, Hongtao
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 2080356711
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2080356711 
045 0 |b d20160917 
100 1 |a Liu, Shicong 
245 1 |a Generalized residual vector quantization for large scale data 
260 |b Cornell University Library, arXiv.org  |c Sep 17, 2016 
513 |a Working Paper 
520 3 |a Vector quantization is an essential tool for tasks involving large scale data, for example, large scale similarity search, which is crucial for content-based information retrieval and analysis. In this paper, we propose a novel vector quantization framework that iteratively minimizes quantization error. First, we provide a detailed review on a relevant vector quantization method named \textit{residual vector quantization} (RVQ). Next, we propose \textit{generalized residual vector quantization} (GRVQ) to further improve over RVQ. Many vector quantization methods can be viewed as the special cases of our proposed framework. We evaluate GRVQ on several large scale benchmark datasets for large scale search, classification and object retrieval. We compared GRVQ with existing methods in detail. Extensive experiments demonstrate our GRVQ framework substantially outperforms existing methods in term of quantization accuracy and computation efficiency. 
653 |a Euclidean space 
653 |a Feedback control systems 
653 |a Information retrieval 
653 |a Computing time 
653 |a Vector quantization 
700 1 |a Shao, Junru 
700 1 |a Lu, Hongtao 
773 0 |t arXiv.org  |g (Sep 17, 2016), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2080356711/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1609.05345