Energy conserving schemes for the simulation of musical instrument contact dynamics

Shranjeno v:
Bibliografske podrobnosti
izdano v:arXiv.org (Jan 7, 2015), p. n/a
Glavni avtor: Chatziioannou, Vasileios
Drugi avtorji: Maarten van Walstijn
Izdano:
Cornell University Library, arXiv.org
Teme:
Online dostop:Citation/Abstract
Full text outside of ProQuest
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 2081603828
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1016/j.jsv.2014.11.017  |2 doi 
035 |a 2081603828 
045 0 |b d20150107 
100 1 |a Chatziioannou, Vasileios 
245 1 |a Energy conserving schemes for the simulation of musical instrument contact dynamics 
260 |b Cornell University Library, arXiv.org  |c Jan 7, 2015 
513 |a Working Paper 
520 3 |a Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton's equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton's method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument. 
653 |a Musical instruments 
653 |a Simulation 
653 |a Sound generation 
653 |a Equations of motion 
653 |a Newton methods 
653 |a Finite difference method 
653 |a Impact loads 
653 |a Formulations 
653 |a Collisions 
653 |a Algorithms 
653 |a Mathematical models 
653 |a Stability analysis 
653 |a Analytic functions 
653 |a Strings 
653 |a Nonlinear equations 
653 |a Contact force 
653 |a Computer simulation 
700 1 |a Maarten van Walstijn 
773 0 |t arXiv.org  |g (Jan 7, 2015), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2081603828/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1501.01493