Assessing Excel VBA Suitability for Monte Carlo Simulation

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Mar 29, 2015), p. n/a
Autor principal: Botchkarev, Alexei
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2083384767
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2083384767 
045 0 |b d20150329 
100 1 |a Botchkarev, Alexei 
245 1 |a Assessing Excel VBA Suitability for Monte Carlo Simulation 
260 |b Cornell University Library, arXiv.org  |c Mar 29, 2015 
513 |a Working Paper 
520 3 |a Monte Carlo (MC) simulation includes a wide range of stochastic techniques used to quantitatively evaluate the behavior of complex systems or processes. Microsoft Excel spreadsheets with Visual Basic for Applications (VBA) software is, arguably, the most commonly employed general purpose tool for MC simulation. Despite the popularity of the Excel in many industries and educational institutions, it has been repeatedly criticized for its flaws and often described as questionable, if not completely unsuitable, for statistical problems. The purpose of this study is to assess suitability of the Excel (specifically its 2010 and 2013 versions) with VBA programming as a tool for MC simulation. The results of the study indicate that Microsoft Excel (versions 2010 and 2013) is a strong Monte Carlo simulation application offering a solid framework of core simulation components including spreadsheets for data input and output, VBA development environment and summary statistics functions. This framework should be complemented with an external high-quality pseudo-random number generator added as a VBA module. A large and diverse category of Excel incidental simulation components that includes statistical distributions, linear and non-linear regression and other statistical, engineering and business functions require execution of due diligence to determine their suitability for a specific MC project. 
610 4 |a Microsoft Corp 
653 |a Monte Carlo simulation 
653 |a Random numbers 
653 |a Applications programs 
653 |a Statistical distributions 
653 |a Complex systems 
653 |a Visual programming languages 
653 |a Spreadsheets 
653 |a Statistical analysis 
653 |a Visual Basic for Applications 
653 |a Pseudorandom 
653 |a Due diligence 
653 |a Computer simulation 
773 0 |t arXiv.org  |g (Mar 29, 2015), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2083384767/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1503.08376