AGN BLR structure, luminosity and mass from combined Reverberation Mapping and Optical Interferometry observations

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:arXiv.org (Oct 11, 2014), p. n/a
Հիմնական հեղինակ: Rakshit, Suvendu
Այլ հեղինակներ: Petrov, Romain G
Հրապարակվել է:
Cornell University Library, arXiv.org
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full text outside of ProQuest
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 2084537588
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1117/12.2056436  |2 doi 
035 |a 2084537588 
045 0 |b d20141011 
100 1 |a Rakshit, Suvendu 
245 1 |a AGN BLR structure, luminosity and mass from combined Reverberation Mapping and Optical Interferometry observations 
260 |b Cornell University Library, arXiv.org  |c Oct 11, 2014 
513 |a Working Paper 
520 3 |a Unveiling the structure of the Broad Line Region (BLR) of AGN is critical to understand the quasar phenomenon. Detail study of the geometry and kinematic of these objects can answer the basic questions about the central BH mass, accretion mechanism and rate, growth and evolution history. Observing the response of the BLR clouds to continuum variations, Reverberation Mapping (RM) provides size vs luminosity and mass vs luminosity relations for QSOs and Sy1 AGNs with the goal to use these objects as standard candles and mass tags. However, the RM size can receive different interpretations depending on the assumed geometry and the corresponding mass depends on an unknown geometrical factor as well on the possible confusion between local and global velocity dispersion. From RM alone, the scatter around the mean mass is as large as a factor 3. Though BLRs are expected to be much smaller than the current spatial resolution of large optical interferometers (OI), we show that differential interferometry with AMBER, GRAVITY and successors can measure the size and constrain the geometry and kinematics on a large sample of QSOs and Sy1 AGNs. AMBER and GRAVITY (K around 10.5) could be easily extended up to K equal to 13 by an external coherencer or by advanced incoherent data processing. Future VLTI instrument could reach K around 15. This opens a large AGN BLR program intended to obtain a very accurate calibration of mass, luminosity and distance measurements from RM data which will allow using many QSOs as standard candles and mass tags to study the general evolution of mass accretion in the Universe. This program is analyzed with our BLR model allowing predicting and interpreting RM and OI measures together and illustrated with the results of our observations of 3C273 with the VLTI. 
653 |a Interferometry 
653 |a Geometry 
653 |a Distance measurement 
653 |a Luminosity 
653 |a Evolution 
653 |a Data processing 
653 |a Deposition 
653 |a Interferometers 
653 |a Spatial resolution 
653 |a Tags 
653 |a Universe 
653 |a Kinematics 
653 |a Mapping 
653 |a Differential interferometry 
653 |a Gravitation 
653 |a Quasars 
653 |a Active galactic nuclei 
700 1 |a Petrov, Romain G 
773 0 |t arXiv.org  |g (Oct 11, 2014), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2084537588/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1410.2994