Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (May 14, 2013), p. n/a
Autor principal: Takaishi, Tetsuya
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2084909112
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1088/1742-6596/423/1/012021  |2 doi 
035 |a 2084909112 
045 0 |b d20130514 
100 1 |a Takaishi, Tetsuya 
245 1 |a Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm 
260 |b Cornell University Library, arXiv.org  |c May 14, 2013 
513 |a Working Paper 
520 3 |a The stochastic volatility model is one of volatility models which infer latent volatility of asset returns. The Bayesian inference of the stochastic volatility (SV) model is performed by the hybrid Monte Carlo (HMC) algorithm which is superior to other Markov Chain Monte Carlo methods in sampling volatility variables. We perform the HMC simulations of the SV model for two liquid stock returns traded on the Tokyo Stock Exchange and measure the volatilities of those stock returns. Then we calculate the accuracy of the volatility measurement using the realized volatility as a proxy of the true volatility and compare the SV model with the GARCH model which is one of other volatility models. Using the accuracy calculated with the realized volatility we find that empirically the SV model performs better than the GARCH model. 
653 |a Monte Carlo simulation 
653 |a Stochastic models 
653 |a Model accuracy 
653 |a Markov chains 
653 |a Bayesian analysis 
653 |a Volatility 
653 |a Algorithms 
653 |a Autoregressive models 
653 |a Empirical analysis 
653 |a Stock exchanges 
653 |a Statistical inference 
653 |a Computer simulation 
773 0 |t arXiv.org  |g (May 14, 2013), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2084909112/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1305.3184