Excitation of collective modes in a quantum flute

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Jun 12, 2012), p. n/a
Yazar: Torfason, Kristinn
Diğer Yazarlar: Manolescu, Andrei, Molodoveanu, Valeriu, Gudmundsson, Vidar
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 2085442055
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1103/PhysRevB.85.245114  |2 doi 
035 |a 2085442055 
045 0 |b d20120612 
100 1 |a Torfason, Kristinn 
245 1 |a Excitation of collective modes in a quantum flute 
260 |b Cornell University Library, arXiv.org  |c Jun 12, 2012 
513 |a Working Paper 
520 3 |a We use a generalized master equation (GME) formalism to describe the non-equilibrium time-dependent transport of Coulomb interacting electrons through a short quantum wire connected to semi-infinite biased leads. The contact strength between the leads and the wire is modulated by out-of-phase time-dependent potentials which simulate a turnstile device. We explore this setup by keeping the contact with one lead at a fixed location at one end of the wire whereas the contact with the other lead is placed on various sites along the length of the wire. We study the propagation of sinusoidal and rectangular pulses. We find that the current profiles in both leads depend not only on the shape of the pulses, but also on the position of the second contact. The current reflects standing waves created by the contact potentials, like in a wind musical instrument (for example a flute), but occurring on the background of the equilibrium charge distribution. The number of electrons in our quantum "flute" device varies between two and three. We find that for rectangular pulses the currents in the leads may flow against the bias for short time intervals, due to the higher harmonics of the charge response. The GME is solved numerically in small time steps without resorting to the traditional Markov and rotating wave approximations. The Coulomb interaction between the electrons in the sample is included via the exact diagonalization method. The system (leads plus sample wire) is described by a lattice model. 
653 |a Electrons 
653 |a Contact potentials 
653 |a Quantum wires 
653 |a Time dependence 
653 |a Mathematical models 
653 |a Standing waves 
653 |a Lattice vibration 
653 |a Charge distribution 
653 |a Musical instruments 
653 |a Markov processes 
653 |a Higher harmonics 
653 |a Computer simulation 
700 1 |a Manolescu, Andrei 
700 1 |a Molodoveanu, Valeriu 
700 1 |a Gudmundsson, Vidar 
773 0 |t arXiv.org  |g (Jun 12, 2012), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2085442055/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1202.0566