Independence Test for High Dimensional Random Vectors

Сохранить в:
Библиографические подробности
Опубликовано в::arXiv.org (May 30, 2012), p. n/a
Главный автор: Pan, G M
Другие авторы: Gao, J, Yang, Y, Guo, M
Опубликовано:
Cornell University Library, arXiv.org
Предметы:
Online-ссылка:Citation/Abstract
Full text outside of ProQuest
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 2086446356
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2086446356 
045 0 |b d20120530 
100 1 |a Pan, G M 
245 1 |a Independence Test for High Dimensional Random Vectors 
260 |b Cornell University Library, arXiv.org  |c May 30, 2012 
513 |a Working Paper 
520 3 |a This paper proposes a new mutual independence test for a large number of high dimensional random vectors. The test statistic is based on the characteristic function of the empirical spectral distribution of the sample covariance matrix. The asymptotic distributions of the test statistic under the null and local alternative hypotheses are established as dimensionality and the sample size of the data are comparable. We apply this test to examine multiple MA(1) and AR(1) models, panel data models with some spatial cross-sectional structures. In addition, in a flexible applied fashion, the proposed test can capture some dependent but uncorrelated structures, for example, nonlinear MA(1) models, multiple ARCH(1) models and vandermonde matrices. Simulation results are provided for detecting these dependent structures. An empirical study of dependence between closed stock prices of several companies from New York Stock Exchange (NYSE) demonstrates that the feature of cross--sectional dependence is popular in stock markets. 
610 4 |a New York Stock Exchange--NYSE 
653 |a Estimating techniques 
653 |a Covariance matrix 
653 |a Spatial data 
653 |a Arches 
653 |a Stock exchanges 
653 |a Characteristic functions 
653 |a Dependence 
653 |a Computer simulation 
653 |a Economic models 
700 1 |a Gao, J 
700 1 |a Yang, Y 
700 1 |a Guo, M 
773 0 |t arXiv.org  |g (May 30, 2012), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2086446356/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1205.6607