A three-dimensional domain decomposition method for large-scale DFT electronic structure calculations

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Sep 20, 2012), p. n/a
Autor principal: Truong Vinh Truong Duy
Altres autors: Ozaki, Taisuke
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2086677636
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2086677636 
045 0 |b d20120920 
100 1 |a Truong Vinh Truong Duy 
245 1 |a A three-dimensional domain decomposition method for large-scale DFT electronic structure calculations 
260 |b Cornell University Library, arXiv.org  |c Sep 20, 2012 
513 |a Working Paper 
520 3 |a With tens of petaflops supercomputers already in operation and exaflops machines expected to appear within the next 10 years, efficient parallel computational methods are required to take advantage of such extreme-scale machines. In this paper, we present a three-dimensional domain decomposition scheme for enabling large-scale electronic calculations based on density functional theory (DFT) on massively parallel computers. It is composed of two methods: (i) atom decomposition method and (ii) grid decomposition method. In the former, we develop a modified recursive bisection method based on inertia tensor moment to reorder the atoms along a principal axis so that atoms that are close in real space are also close on the axis to ensure data locality. The atoms are then divided into sub-domains depending on their projections onto the principal axis in a balanced way among the processes. In the latter, we define four data structures for the partitioning of grids that are carefully constructed to make data locality consistent with that of the clustered atoms for minimizing data communications between the processes. We also propose a decomposition method for solving the Poisson equation using three-dimensional FFT in Hartree potential calculation, which is shown to be better than a previously proposed parallelization method based on a two-dimensional decomposition in terms of communication efficiency. For evaluation, we perform benchmark calculations with our open-source DFT code, OpenMX, paying particular attention to the O(N) Krylov subspace method. The results show that our scheme exhibits good strong and weak scaling properties, with the parallel efficiency at 131,072 cores being 67.7% compared to the baseline of 16,384 cores with 131,072 diamond atoms on the K computer. 
653 |a Decomposition 
653 |a Subspace methods 
653 |a Parallel processing 
653 |a Domain decomposition methods 
653 |a Mathematical analysis 
653 |a Supercomputers 
653 |a Data structures 
653 |a Diamonds 
653 |a Tensors 
653 |a Density functional theory 
653 |a Electronic structure 
653 |a Poisson equation 
653 |a Parallel computers 
653 |a Recursive methods 
700 1 |a Ozaki, Taisuke 
773 0 |t arXiv.org  |g (Sep 20, 2012), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2086677636/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1209.4506