Design and Performance of the Soft Gamma-ray Detector for the NeXT mission

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Apr 17, 2006), p. n/a
Autore principale: Tajima, H
Altri autori: Kamae, T, Madejski, G, Mitani, T, Nakazawa, K, Tanaka, T, Takahashi, T, Watanabe, S, Fukazawa, Y, Ikagawa, T, Kataoka, J, Kokubun, M, Makishima, K, Terada, Y, Nomachi, M, Tashiro, M
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 2090204459
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1109/TNS.2005.862776  |2 doi 
035 |a 2090204459 
045 0 |b d20060417 
100 1 |a Tajima, H 
245 1 |a Design and Performance of the Soft Gamma-ray Detector for the NeXT mission 
260 |b Cornell University Library, arXiv.org  |c Apr 17, 2006 
513 |a Working Paper 
520 3 |a The Soft Gamma-ray Detector (SGD) on board the NeXT (Japanese future high energy astrophysics mission) is a Compton telescope with narrow field of view (FOV), which utilizes Compton kinematics to enhance its background rejection capabilities. It is realized as a hybrid semiconductor gamma-ray detector which consists of silicon and CdTe (cadmium telluride) detectors. It can detect photons in a wide energy band (0.05-1 MeV) at a background level of 5 x 10^-7 counts/cm^2/s; the silicon layers are required to improve the performance at a lower energy band (<0.3 MeV). Excellent energy resolution is the key feature of the SGD, allowing it to achieve both high angular resolution and good background rejection capability. An additional capability of the SGD, its ability to measure gamma-ray polarization, opens up a new window to study properties of astronomical objects. We will present the development of key technologies to realize the SGD: high quality CdTe, low noise front-end ASIC and bump bonding technology. Energy resolutions of 1.7 keV (FWHM) for CdTe pixel detectors and 1.1 keV for Si strip detectors have been measured. We also present the validation of Monte Carlo simulation used to evaluate the performance of the SGD. 
653 |a Cadmium telluride 
653 |a Performance evaluation 
653 |a Sensors 
653 |a Gamma rays 
653 |a Silicon 
653 |a Photons 
653 |a Detectors 
653 |a Energy resolution 
653 |a Performance enhancement 
653 |a Low noise 
653 |a Rejection 
653 |a Angular resolution 
653 |a Gamma ray detectors 
653 |a Kinematics 
653 |a Astrophysics 
653 |a Background radiation 
653 |a Computer simulation 
653 |a Celestial bodies 
653 |a Cadmium tellurides 
653 |a Field of view 
700 1 |a Kamae, T 
700 1 |a Madejski, G 
700 1 |a Mitani, T 
700 1 |a Nakazawa, K 
700 1 |a Tanaka, T 
700 1 |a Takahashi, T 
700 1 |a Watanabe, S 
700 1 |a Fukazawa, Y 
700 1 |a Ikagawa, T 
700 1 |a Kataoka, J 
700 1 |a Kokubun, M 
700 1 |a Makishima, K 
700 1 |a Terada, Y 
700 1 |a Nomachi, M 
700 1 |a Tashiro, M 
773 0 |t arXiv.org  |g (Apr 17, 2006), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2090204459/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/astro-ph/0604365