Testing the equality of error distributions from k independent GARCH models

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 4, 2008), p. n/a
Autor principal: Chandra, Ajay
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2090496913
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2090496913 
045 0 |b d20081204 
100 1 |a Chandra, Ajay 
245 1 |a Testing the equality of error distributions from k independent GARCH models 
260 |b Cornell University Library, arXiv.org  |c Dec 4, 2008 
513 |a Working Paper 
520 3 |a In this paper we study the problem of testing the null hypothesis that errors from k independent parametrically specified generalized autoregressive conditional heteroskedasticity (GARCH) models have the same distribution versus a general alternative. First we establish the asymptotic validity of a class of linear test statistics derived from the k residual-based empirical distribution functions. A distinctive feature is that the asymptotic distribution of the test statistics involves terms depending on the distributions of errors and the parameters of the models, and weight functions providing the flexibility to choose scores for investigating power performance. A Monte Carlo study assesses the asymptotic performance in terms of empirical size and power of the three-sample test based on the Wilcoxon and Van der Waerden score generating functions in finite samples. The results demonstrate that the two proposed tests have overall reasonable size and their power is particularly high when the assumption of Gaussian errors is violated. As an illustrative example, the tests are applied to daily individual stock returns of the New York Stock Exchange data. 
653 |a Monte Carlo simulation 
653 |a Stochastic models 
653 |a Regression analysis 
653 |a Economic models 
653 |a Statistical methods 
653 |a Null hypothesis 
653 |a Asymptotic properties 
653 |a Autoregressive models 
653 |a Stock exchanges 
653 |a Statistical tests 
653 |a Distribution functions 
653 |a Computer simulation 
773 0 |t arXiv.org  |g (Dec 4, 2008), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2090496913/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/0812.0838