A study on radial basis function and quasi-Monte Carlo methods

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jul 26, 2002), p. n/a
Autor principal: Chen, W
Altres autors: J He
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2091331352
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2091331352 
045 0 |b d20020726 
100 1 |a Chen, W 
245 1 |a A study on radial basis function and quasi-Monte Carlo methods 
260 |b Cornell University Library, arXiv.org  |c Jul 26, 2002 
513 |a Working Paper 
520 3 |a The radial basis function (RBF) and quasi Monte Carlo (QMC) methods are two very promising schemes to handle high-dimension problems with complex and moving boundary geometry due to the fact that they are independent of dimensionality and inherently meshless. The two strategies are seemingly irrelevant and are so far developed independently. The former is largely used to solve partial differential equations (PDE), neural network, geometry generation, scattered data processing with mathematical justifications of interpolation theory [1], while the latter is often employed to evaluate high-dimension integration with the Monte Carlo method (MCM) background [2]. The purpose of this communication is to try to establish their intrinsic relationship on the grounds of numerical integral. The kernel function of integral equation is found the key to construct efficient RBFs. Some significant results on RBF construction, error bound and node placement are also presented. It is stressed that the RBF is here established on integral analysis rather than on the sophisticated interpolation and native space analysis. 
653 |a Monte Carlo simulation 
653 |a Partial differential equations 
653 |a Neural networks 
653 |a Finite element method 
653 |a Data processing 
653 |a Radial basis function 
653 |a Meshless methods 
653 |a Differential geometry 
653 |a Integral equations 
653 |a Interpolation 
653 |a Basis functions 
653 |a Kernel functions 
700 1 |a J He 
773 0 |t arXiv.org  |g (Jul 26, 2002), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2091331352/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/math/0207247