Vlasov methods in space physics and astrophysics

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Aug 17, 2018), p. n/a
Autor principal: Palmroth, Minna
Outros Autores: Ganse, Urs, Pfau-Kempf, Yann, Battarbee, Markus, Turc, Lucile, Brito, Thiago, Grandin, Maxime, Sanni Hoilijoki, Sandroos, Arto, Sebastian von Alfthan
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 2092775529
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1007/s41115-018-0003-2  |2 doi 
035 |a 2092775529 
045 0 |b d20180817 
100 1 |a Palmroth, Minna 
245 1 |a Vlasov methods in space physics and astrophysics 
260 |b Cornell University Library, arXiv.org  |c Aug 17, 2018 
513 |a Working Paper 
520 3 |a This paper reviews Vlasov-based numerical methods used to model plasma in space physics and astrophysics. Plasma consists of collectively behaving charged particles that form the major part of baryonic matter in the Universe. Many concepts ranging from our own planetary environment to the Solar system and beyond can be understood in terms of kinetic plasma physics, represented by the Vlasov equation. We introduce the physical basis for the Vlasov system, and then outline the associated numerical methods that are typically used. A particular application of the Vlasov system is Vlasiator, the world's first global hybrid-Vlasov simulation for the Earth's magnetic domain, the magnetosphere. We introduce the design strategies for Vlasiator and outline its numerical concepts ranging from solvers to coupling schemes. We review Vlasiator's parallelisation methods and introduce the used high-performance computing (HPC) techniques. A short review of verification, validation and physical results is included. The purpose of the paper is to present the Vlasov system and introduce an example implementation, and to illustrate that even with massive computational challenges, an accurate description of physics can be rewarding in itself and significantly advance our understanding. Upcoming supercomputing resources are making similar efforts feasible in other fields as well, making our design options relevant for others facing similar challenges. 
653 |a Numerical analysis 
653 |a Astrophysics 
653 |a Planetary environments 
653 |a Earth magnetosphere 
653 |a Vlasov equations 
653 |a Universe 
653 |a Solvers 
653 |a Mathematical models 
653 |a Program verification (computers) 
653 |a Plasma physics 
653 |a Magnetic domains 
653 |a Plasma (physics) 
653 |a Charged particles 
653 |a Solar system 
653 |a Numerical methods 
653 |a Computer simulation 
700 1 |a Ganse, Urs 
700 1 |a Pfau-Kempf, Yann 
700 1 |a Battarbee, Markus 
700 1 |a Turc, Lucile 
700 1 |a Brito, Thiago 
700 1 |a Grandin, Maxime 
700 1 |a Sanni Hoilijoki 
700 1 |a Sandroos, Arto 
700 1 |a Sebastian von Alfthan 
773 0 |t arXiv.org  |g (Aug 17, 2018), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2092775529/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1808.05885