Safety Monitoring Model of a Super-High Concrete Dam by Using RBF Neural Network Coupled with Kernel Principal Component Analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematical Problems in Engineering vol. 2018 (2018)
Autor principal: Chen, Siyu
Otros Autores: Gu, Chongshi, Lin, Chaoning, Zhao, Erfeng, Song, Jintao
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2101282448
003 UK-CbPIL
022 |a 1024-123X 
022 |a 1563-5147 
024 7 |a 10.1155/2018/1712653  |2 doi 
035 |a 2101282448 
045 2 |b d20180101  |b d20181231 
084 |a 131639  |2 nlm 
100 1 |a Chen, Siyu  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China 
245 1 |a Safety Monitoring Model of a Super-High Concrete Dam by Using RBF Neural Network Coupled with Kernel Principal Component Analysis 
260 |b John Wiley & Sons, Inc.  |c 2018 
513 |a Journal Article 
520 3 |a Effective deformation monitoring is vital for the structural safety of super-high concrete dams. The radial displacement of the dam body is an important index of dam deformation, which is mainly influenced by reservoir water level, temperature effect, and time effect. In general, the safety monitoring models of dams are built on the basis of statistical models. The temperature effect of dam safety monitoring models is interpreted using approximate functions or the temperature values of a few points of measurement. However, this technique confers difficulty in representing the nonlinear features of the temperature effect on super-high concrete dams. In this study, a safety monitoring model of super-high concrete dams is established through the radial basis neural network (RBF-NN) and kernel principal component analysis (KPCA). The RBF-NN with strong nonlinear fitting capacity is utilized as the framework of the model, and KPCA with different kernels is adopted to extract the temperature variables of the dam temperature dataset. The model is applied to a super-high arch dam in China, and results show that the Hybrid-KPCA -RBF-NN model has high fitting and prediction precision and thus has practical application value. 
653 |a Dams 
653 |a Structural safety 
653 |a Concrete 
653 |a Deformation effects 
653 |a Concrete dams 
653 |a Dam safety 
653 |a Deformation analysis 
653 |a Monitoring 
653 |a Mechanics 
653 |a Monitoring systems 
653 |a Mathematical problems 
653 |a Water levels 
653 |a Arch dams 
653 |a Multivariate analysis 
653 |a Principal components analysis 
653 |a Neural networks 
653 |a Temperature effects 
653 |a Variables 
653 |a Engineering 
653 |a Algorithms 
653 |a Statistical models 
653 |a Economic models 
700 1 |a Gu, Chongshi  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China 
700 1 |a Lin, Chaoning  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China 
700 1 |a Zhao, Erfeng  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China 
700 1 |a Song, Jintao  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China 
773 0 |t Mathematical Problems in Engineering  |g vol. 2018 (2018) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2101282448/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2101282448/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2101282448/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch