A Robust Crowdsourcing-Based Indoor Localization System

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Sensors vol. 17, no. 4 (2017), p. 864
Váldodahkki: Zhou, Baoding
Eará dahkkit: Li, Qingquan, Mao, Qingzhou, Tu, Wei
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 2108671271
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s17040864  |2 doi 
035 |a 2108671271 
045 2 |b d20170101  |b d20171231 
084 |a 231630  |2 nlm 
100 1 |a Zhou, Baoding 
245 1 |a A Robust Crowdsourcing-Based Indoor Localization System 
260 |b MDPI AG  |c 2017 
513 |a Journal Article 
520 3 |a WiFi fingerprinting-based indoor localization has been widely used due to its simplicity and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental changes and device diversity. RSS variance severely degrades the localization accuracy. In this paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS abstracts the indoor map as the semantics graph in which the edges are the possible user paths and the vertexes are the location where users may take special activities. RCILS extracts the activity sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio map is constructed based on the localization results. For the RSS variance problem, RCILS uses the trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and robustness of RCILS. 
653 |a Localization 
653 |a Crowdsourcing 
653 |a Semantics 
653 |a Smartphones 
700 1 |a Li, Qingquan 
700 1 |a Mao, Qingzhou 
700 1 |a Tu, Wei 
773 0 |t Sensors  |g vol. 17, no. 4 (2017), p. 864 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2108671271/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2108671271/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch