The Power of Visual Texture in Aesthetic Perception: An Exploration of the Predictability of Perceived Aesthetic Emotions

Guardado en:
Detalles Bibliográficos
Publicado en:Computational Intelligence and Neuroscience : CIN vol. 2018 (2018)
Autor principal: Liu, Jianli
Otros Autores: Lughofer, Edwin, Zeng, Xianyi, Li, Zhengxin
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2111087710
003 UK-CbPIL
022 |a 1687-5265 
022 |a 1687-5273 
024 7 |a 10.1155/2018/1812980  |2 doi 
035 |a 2111087710 
045 2 |b d20180101  |b d20181231 
084 |a 130312  |2 nlm 
100 1 |a Liu, Jianli  |u College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China 
245 1 |a The Power of Visual Texture in Aesthetic Perception: An Exploration of the Predictability of Perceived Aesthetic Emotions 
260 |b John Wiley & Sons, Inc.  |c 2018 
513 |a Journal Article 
520 3 |a How to interpret the relationship between the low-level features, such as some statistical characteristics of color and texture, and the high-level aesthetic properties, such as warm or cold, soft or hard, has been a hot research topic of neuroaesthetics. Contrary to the black-box method widely used in the fields of machine learning and pattern recognition, we build a white-box model with the hierarchical feed-forward structure inspired by neurobiological mechanisms underlying the aesthetic perception of visual art. In the experiment, the aesthetic judgments for 8 pairs of aesthetic antonyms are carried out for a set of 151 visual textures. For each visual texture, 106 low-level features are extracted. Then, ten more useful and effective features are selected through neighborhood component analysis to reduce information redundancy and control the complexity of the model. Finally, model building of the beauty appreciation of visual textures using multiple linear or nonlinear regression methods is detailed. Compared with our previous work, a more robust feature selection algorithm, neighborhood component analysis, is used to reduce information redundancy and control computation complexity of the model. Some nonlinear models are also adopted and achieved higher prediction accuracy when compared with the previous linear models. Additionally, the selection strategy of aesthetic antonyms and the selection standards of the core set of them are also explained. This research also suggests that the aesthetic perception and appreciation of visual textures can be predictable based on the computed low-level features. 
653 |a Feature extraction 
653 |a Judgments 
653 |a Visual perception 
653 |a Bioinformatics 
653 |a Brain research 
653 |a Pattern recognition 
653 |a Structural hierarchy 
653 |a Neurosciences 
653 |a Machine learning 
653 |a Medical imaging 
653 |a Emotions 
653 |a Statistical analysis 
653 |a Learning algorithms 
653 |a Visual perception driven algorithms 
653 |a Redundancy 
653 |a Experiments 
653 |a Mathematical models 
653 |a Regression analysis 
653 |a Methods 
653 |a Algorithms 
653 |a Complexity 
653 |a Neighborhoods 
653 |a Texture 
653 |a Semantics 
653 |a Artificial intelligence 
700 1 |a Lughofer, Edwin  |u Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, A-4040 Linz, Austria 
700 1 |a Zeng, Xianyi  |u Université Lille Nord de France, F-59000 Lille, France; GEMTEX, ENSAIT, F-59056 Roubaix, France 
700 1 |a Li, Zhengxin  |u School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China 
773 0 |t Computational Intelligence and Neuroscience : CIN  |g vol. 2018 (2018) 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2111087710/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2111087710/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2111087710/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch