Modular structures and extended-modular-group-structures after Hecke pairs

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:arXiv.org (Oct 1, 2018), p. n/a
מחבר ראשי: Orchidea Maria Lecian
יצא לאור:
Cornell University Library, arXiv.org
נושאים:
גישה מקוונת:Citation/Abstract
Full text outside of ProQuest
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 2115560817
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1088/1742-6596/1194/1/012067  |2 doi 
035 |a 2115560817 
045 0 |b d20181001 
100 1 |a Orchidea Maria Lecian 
245 1 |a Modular structures and extended-modular-group-structures after Hecke pairs 
260 |b Cornell University Library, arXiv.org  |c Oct 1, 2018 
513 |a Working Paper 
520 3 |a The simplices and the complexes arsing form the grading of the fundamental (desymmetrized) domain of arithmetical groups and non-arithmetical groups, as well as their extended (symmetrized) ones are described also for oriented manifolds in dim greater than 2. The conditions for the definition of fibers are summarized after Hamiltonian analysis, the latters can in some cases be reduced to those for sections for graded groups, such as the Picard groups and the Vinberg group.The cases for which modular structures rather than modular-groupstructure measures can be analyzed for non-arithmetic groups, i.e. also in the cases for which Gelfand triples (rigged spaces) have to be substituted by Hecke couples, as, for Hecke groups, the existence of intertwining operators after the calculation of the second commutator within the Haar measures for the operators of the correspondingly-generated C-[star] algebras is straightforward. The results hold also for (also non-abstract) groups with measures on (manifold) boundaries. The Poincaré invariance of the representation of Wigner-Bargmann (spin 1/2) particles is analyzed within the Fock-space interaction representation. The well-posed-ness of initial conditions and boundary ones for the connected (families of) equations is discussed. As an example, Picard-related equations can be classified according to the genus of the modular curve(s) attached to the solutions(s). From the Hamiltonian analysis, further results in the contraction of the congruence (extended sub-)groups for non-arithmetical groups for the construction of tori is provided as an alternative to the free diffeomorphism group. In addition, the presence of Poincaré complexes is found compatible with non-local interactions, i.e. both lattices interactions or spin-like ones. 
653 |a Particle spin 
653 |a Well posed problems 
653 |a Mathematical analysis 
653 |a Initial conditions 
653 |a Commutators 
653 |a Isomorphism 
653 |a Operators 
653 |a Lattices 
653 |a Group theory 
653 |a Modular structures 
653 |a Toruses 
653 |a Evaluation 
653 |a Manifolds 
653 |a Representations 
773 0 |t arXiv.org  |g (Oct 1, 2018), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2115560817/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1810.00775