How to treat uncertainties in life cycle assessment studies?

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:The International Journal of Life Cycle Assessment vol. 24, no. 4 (Apr 2019), p. 794
Váldodahkki: Elorri, Igos
Eará dahkkit: Benetto Enrico, Meyer, Rodolphe, Baustert, Paul, Othoniel Benoit
Almmustuhtton:
Springer Nature B.V.
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 212142492
003 UK-CbPIL
022 |a 0948-3349 
022 |a 1614-7502 
024 7 |a 10.1007/s11367-018-1477-1  |2 doi 
035 |a 212142492 
045 2 |b d20190401  |b d20190430 
084 |a 109056  |2 nlm 
100 1 |a Elorri, Igos  |u Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN), Belvaux, Luxembourg (GRID:grid.423669.c) 
245 1 |a How to treat uncertainties in life cycle assessment studies? 
260 |b Springer Nature B.V.  |c Apr 2019 
513 |a Journal Article 
520 3 |a PurposeThe use of life cycle assessment (LCA) as a decision support tool can be hampered by the numerous uncertainties embedded in the calculation. The treatment of uncertainty is necessary to increase the reliability and credibility of LCA results. The objective is to provide an overview of the methods to identify, characterize, propagate (uncertainty analysis), understand the effects (sensitivity analysis), and communicate uncertainty in order to propose recommendations to a broad public of LCA practitioners.MethodsThis work was carried out via a literature review and an analysis of LCA tool functionalities. In order to facilitate the identification of uncertainty, its location within an LCA model was distinguished between quantity (any numerical data), model structure (relationships structure), and context (criteria chosen within the goal and scope of the study). The methods for uncertainty characterization, uncertainty analysis, and sensitivity analysis were classified according to the information provided, their implementation in LCA software, the time and effort required to apply them, and their reliability and validity. This review led to the definition of recommendations on three levels: basic (low efforts with LCA software), intermediate (significant efforts with LCA software), and advanced (significant efforts with non-LCA software).Results and discussionFor the basic recommendations, minimum and maximum values (quantity uncertainty) and alternative scenarios (model structure/context uncertainty) are defined for critical elements in order to estimate the range of results. Result sensitivity is analyzed via one-at-a-time variations (with realistic ranges of quantities) and scenario analyses. Uncertainty should be discussed at least qualitatively in a dedicated paragraph. For the intermediate level, the characterization can be refined with probability distributions and an expert review for scenario definition. Uncertainty analysis can then be performed with the Monte Carlo method for the different scenarios. Quantitative information should appear in inventory tables and result figures. Finally, advanced practitioners can screen uncertainty sources more exhaustively, include correlations, estimate model error with validation data, and perform Latin hypercube sampling and global sensitivity analysis.ConclusionsThrough this pedagogic review of the methods and practical recommendations, the authors aim to increase the knowledge of LCA practitioners related to uncertainty and facilitate the application of treatment techniques. To continue in this direction, further research questions should be investigated (e.g., on the implementation of fuzzy logic and model uncertainty characterization) and the developers of databases, LCIA methods, and software tools should invest efforts in better implementing and treating uncertainty in LCA. 
653 |a Sensitivity analysis 
653 |a Identification methods 
653 |a Software 
653 |a Fuzzy logic 
653 |a Context 
653 |a Software reliability 
653 |a Hypercubes 
653 |a Environmental impact 
653 |a Life cycle analysis 
653 |a Uncertainty analysis 
653 |a Computer simulation 
653 |a Life cycles 
653 |a Life cycle assessment 
653 |a Literature reviews 
653 |a Software development tools 
653 |a Decision support systems 
653 |a Computer programs 
653 |a Perceptions 
653 |a Latin hypercube sampling 
653 |a Monte Carlo simulation 
653 |a Economic 
700 1 |a Benetto Enrico  |u Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN), Belvaux, Luxembourg (GRID:grid.423669.c) 
700 1 |a Meyer, Rodolphe  |u Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN), Belvaux, Luxembourg (GRID:grid.423669.c) 
700 1 |a Baustert, Paul  |u Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN), Belvaux, Luxembourg (GRID:grid.423669.c) 
700 1 |a Othoniel Benoit  |u Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN), Belvaux, Luxembourg (GRID:grid.423669.c) 
773 0 |t The International Journal of Life Cycle Assessment  |g vol. 24, no. 4 (Apr 2019), p. 794 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/212142492/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/212142492/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch