Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

Guardado en:
Detalles Bibliográficos
Publicado en:NASA Center for AeroSpace Information (CASI). Conference Proceedings (Jun 22, 2015)
Autor principal: Gnoffo, Peter A
Publicado:
NASA/Langley Research Center
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2128118698
003 UK-CbPIL
035 |a 2128118698 
045 0 |b d20150622 
100 1 |a Gnoffo, Peter A 
245 1 |a Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series 
260 |b NASA/Langley Research Center  |c Jun 22, 2015 
513 |a Conference Proceedings 
520 3 |a Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs. 
653 |a Amplitudes 
653 |a Partial differential equations 
653 |a Nonlinear differential equations 
653 |a Walsh transforms 
653 |a Matrix methods 
653 |a Square waves 
653 |a Workflow 
653 |a Fractals 
653 |a Algorithms 
653 |a Walsh function 
653 |a Burgers equation 
653 |a Nonlinear equations 
653 |a Prolongation 
773 0 |t NASA Center for AeroSpace Information (CASI). Conference Proceedings  |g (Jun 22, 2015) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2128118698/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://ntrs.nasa.gov/search.jsp?R=20160005987