Regional Climate Model Evaluation System powered by Apache Open Climate Workbench v1.3.0: an enabling tool for facilitating regional climate studies

Gardado en:
Detalles Bibliográficos
Publicado en:Geoscientific Model Development vol. 11, no. 11 (2018), p. 4435
Autor Principal: Lee, Huikyo
Outros autores: Goodman, Alexander, Lewis McGibbney, Waliser, Duane E, Kim, Jinwon, Loikith, Paul C, Gibson, Peter B, Massoud, Elias C
Publicado:
Copernicus GmbH
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2129410069
003 UK-CbPIL
022 |a 1991-962X 
022 |a 1991-9603 
024 7 |a 10.5194/gmd-11-4435-2018  |2 doi 
035 |a 2129410069 
045 2 |b d20180101  |b d20181231 
084 |a 123629  |2 nlm 
100 1 |a Lee, Huikyo  |u Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
245 1 |a Regional Climate Model Evaluation System powered by Apache Open Climate Workbench v1.3.0: an enabling tool for facilitating regional climate studies 
260 |b Copernicus GmbH  |c 2018 
513 |a Journal Article 
520 3 |a The Regional Climate Model Evaluation System (RCMES) is an enabling tool of the National Aeronautics and Space Administration to support the United States National Climate Assessment. As a comprehensive system for evaluating climate models on regional and continental scales using observational datasets from a variety of sources, RCMES is designed to yield information on the performance of climate models and guide their improvement. Here, we present a user-oriented document describing the latest version of RCMES, its development process, and future plans for improvements. The main objective of RCMES is to facilitate the climate model evaluation process at regional scales. RCMES provides a framework for performing systematic evaluations of climate simulations, such as those from the Coordinated Regional Climate Downscaling Experiment (CORDEX), using in situ observations, as well as satellite and reanalysis data products. The main components of RCMES are (1) a database of observations widely used for climate model evaluation, (2) various data loaders to import climate models and observations on local file systems and Earth System Grid Federation (ESGF) nodes, (3) a versatile processor to subset and regrid the loaded datasets, (4) performance metrics designed to assess and quantify model skill, (5) plotting routines to visualize the performance metrics, (6) a toolkit for statistically downscaling climate model simulations, and (7) two installation packages to maximize convenience of users without Python skills. RCMES website is maintained up to date with a brief explanation of these components. Although there are other open-source software (OSS) toolkits that facilitate analysis and evaluation of climate models, there is a need for climate scientists to participate in the development and customization of OSS to study regional climate change. To establish infrastructure and to ensure software sustainability, development of RCMES is an open, publicly accessible process enabled by leveraging the Apache Software Foundation's OSS library, Apache Open Climate Workbench (OCW). The OCW software that powers RCMES includes a Python OSS library for common climate model evaluation tasks as well as a set of user-friendly interfaces for quickly configuring a model evaluation task. OCW also allows users to build their own climate data analysis tools, such as the statistical downscaling toolkit provided as a part of RCMES. 
651 4 |a United States--US 
653 |a Evaluation 
653 |a Environmental assessment 
653 |a Source code 
653 |a Microprocessors 
653 |a Open source software 
653 |a Aeronautics 
653 |a Interfaces 
653 |a Climate change 
653 |a Computer simulation 
653 |a Regional development 
653 |a Data analysis 
653 |a Toolkits 
653 |a Climatic data 
653 |a Regional climates 
653 |a Sustainable development 
653 |a Software 
653 |a Loaders 
653 |a Sustainability 
653 |a Regional climate models 
653 |a Climatic analysis 
653 |a Satellites 
653 |a Statistical analysis 
653 |a Satellite observation 
653 |a Data processing 
653 |a Computer programs 
653 |a Performance measurement 
653 |a Climate models 
653 |a Earth 
653 |a Components 
653 |a Regional analysis 
653 |a Business metrics 
653 |a Climate studies 
653 |a Frameworks 
653 |a Datasets 
653 |a Environmental 
700 1 |a Goodman, Alexander  |u Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
700 1 |a Lewis McGibbney  |u Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
700 1 |a Waliser, Duane E  |u Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
700 1 |a Kim, Jinwon  |u Joint Institute for Regional Earth System Science & Engineering, University of California, Los Angeles, CA, USA; National Institute of Meteorological Sciences/Korean Meteorological Administration, Seogwipo, South Korea 
700 1 |a Loikith, Paul C  |u Department of Geography, Portland State University, Portland, OR, USA 
700 1 |a Gibson, Peter B  |u Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
700 1 |a Massoud, Elias C  |u Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
773 0 |t Geoscientific Model Development  |g vol. 11, no. 11 (2018), p. 4435 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2129410069/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2129410069/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2129410069/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch