MARC

LEADER 00000nab a2200000uu 4500
001 2131580695
003 UK-CbPIL
022 |a 1435-9871 
022 |a 2363-7064 
035 |a 2131580695 
045 2 |b d20180701  |b d20181231 
084 |a 79588  |2 nlm 
100 1 |a Rosenfeld, Avi  |u Jerusalem College of Technology, Jerusalem, Israel. Email: rosenfa@jct.ac.il 
245 1 |a WhatsApp usage patterns and prediction of demographic characteristics without access to message content 
260 |b Max Planck Institut für Demografische Forschung  |c Jul-Dec 2018 
513 |a Journal Article 
520 3 |a BACKGROUND Social networks on the Internet have become ubiquitous applications that allow people to easily share text, pictures, and audio and video files. Popular networks include WhatsApp, Facebook, Reddit, and LinkedIn. OBJECTIVE We present an extensive study of the usage of the WhatsApp social network, an Internet messaging application that is quickly replacing SMS (short message service) messaging. To better understand people's use of the network, we provide an analysis of over 6 million encrypted messages from over 100 users, with the objective of building demographic prediction models that use activity data but not the content of these messages. METHODS We performed extensive statistical and numerical analysis of the data and found significant differences in WhatsApp usage across people of different genders and ages. We also entered the data into the Weka and pROC data mining packages and studied models created from decision trees, Bayesian networks, and logistic regression algorithms. RESULTS We found that different gender and age demographics had significantly different usage habits in almost all message and group attributes. We also noted differences in users' group behavior and created prediction models, including the likelihood that a given group would have relatively more file attachments and if a group would contain a larger number of participants, a higher frequency of activity, quicker response times, and shorter messages. ONCLUSIONS We were successful in quantifying and predicting a user's gender and age demographic. Similarly, we were able to predict different types of group usage. All models were built without analyzing message content. CONTRIBUTION The main contribution of this paper is the ability to predict user demographics without having access to users' text content. We present a detailed discussion about the specific attributes that were contained in all predictive models and suggest possible applications based on these results. 
610 4 |a LinkedIn Corp 
651 4 |a New York 
651 4 |a United States--US 
653 |a International conferences 
653 |a Computer mediated communication 
653 |a Internet 
653 |a Demographics 
653 |a Social networks 
653 |a Prediction models 
653 |a Verbal communication 
653 |a Short message service 
653 |a Gender 
653 |a User generated content 
653 |a Pictures 
653 |a Statistical analysis 
653 |a Decision trees 
653 |a Use statistics 
653 |a Data processing 
653 |a Social organization 
653 |a Data mining 
653 |a Bayesian analysis 
653 |a Numerical analysis 
653 |a Statistical methods 
653 |a Demography 
653 |a Mathematical models 
653 |a Regression analysis 
653 |a Audio data 
653 |a Messages 
653 |a Access 
653 |a Sexes 
653 |a Decision analysis 
653 |a Sociodemographics 
653 |a Habits 
653 |a Attributes 
653 |a Application 
653 |a Age differences 
653 |a Text messaging 
653 |a Smartphones 
653 |a Group dynamics 
653 |a Reaction time 
653 |a Artificial intelligence 
653 |a Language usage 
653 |a Social media 
653 |a Video recordings 
653 |a Information retrieval 
653 |a Social 
700 1 |a Sina, Sigal  |u Bar-Ilan University, Ramat Gan, Israel 
700 1 |a Sarne, David  |u Bar-Ilan University, Ramat Gan, Israel 
700 1 |a Avidov, Or  |u Bar-Ilan University, Ramat Gan, Israel 
700 1 |a Kraus, Sarit  |u Bar-Ilan University, Ramat Gan, Israel 
773 0 |t Demographic Research  |g vol. 39 (Jul-Dec 2018), p. 647 
786 0 |d ProQuest  |t Sociology Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2131580695/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2131580695/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2131580695/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch