Multi-Scale Modeling of Phase Separation in Mixed Lipid Bilayers

Guardat en:
Dades bibliogràfiques
Publicat a:Biophysical Journal vol. 89, no. 4 (Oct 2005), p. 2385-2394
Autor principal: Shi, Qiang
Altres autors: Voth, Gregory A
Publicat:
Biophysical Society
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 215700965
003 UK-CbPIL
022 |a 0006-3495 
022 |a 1542-0086 
035 |a 215700965 
045 2 |b d20051001  |b d20051031 
084 |a 16055548 
084 |a 36123  |2 nlm 
100 1 |a Shi, Qiang 
245 1 |a Multi-Scale Modeling of Phase Separation in Mixed Lipid Bilayers 
260 |b Biophysical Society  |c Oct 2005 
513 |a Journal Article 
520 3 |a An approach to bridging the phenomenological field theory description of phase separation in binary mixed lipid bilayers with coarse-grained (CG) molecular dynamics (MD) simulation is presented. CG MD simulation is carried out for a 1:1 dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylethanolamine lipid mixture at the liquid-gel phase coexistence condition. The liquid-gel phase separation can be characterized by the bilayer thickness, area per lipid molecule, and orientation parameter of the lipid tails. After a local order parameter is defined using the lipid tail bond orientation parameter, the CG MD data are bridged to a mesoscopic model based on the phenomenological Landau-Ginzberg free-energy functional. All parameters in this mesoscopic model are defined from the information of the phase boundary structure and the distributions of the order parameter in the liquid and gel phases. It is found that the mesoscopic model reproduces the equilibrium properties of the system very well, including collective fluctuations in both phases, spatial correlation functions of the order parameter, and the line tension. The possibility of using a time-dependent Landau-Ginzberg model to mimic the phase-separation dynamics is also investigated, using the relaxation time constant obtained by fitting the time-dependent correlation functions of the order parameter. [PUBLICATION ABSTRACT]   An approach to bridging the phenomenological field theory description of phase separation in binary mixed lipid bilayers with coarse-grained (CG) molecular dynamics (MD) simulation is presented. CG MD simulation is carried out for a 1:1 dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylethanolamine lipid mixture at the liquid-gel phase coexistence condition. The liquid-gel phase separation can be characterized by the bilayer thickness, area per lipid molecule, and orientation parameter of the lipid tails. After a local order parameter is defined using the lipid tail bond orientation parameter, the CG MD data are bridged to a mesoscopic model based on the phenomenological Landau-Ginzberg free-energy functional. All parameters in this mesoscopic model are defined from the information of the phase boundary structure and the distributions of the order parameter in the liquid and gel phases. It is found that the mesoscopic model reproduces the equilibrium properties of the system very well, including collective fluctuations in both phases, spatial correlation functions of the order parameter, and the line tension. The possibility of using a time-dependent Landau-Ginzberg model to mimic the phase-separation dynamics is also investigated, using the relaxation time constant obtained by fitting the time-dependent correlation functions of the order parameter. 
650 1 2 |a Cell Membrane  |x chemistry 
650 2 2 |a Computer Simulation 
650 1 2 |a Lipid Bilayers  |x chemistry 
650 1 2 |a Membrane Fluidity 
650 2 2 |a Models, Biological 
650 1 2 |a Models, Chemical 
650 1 2 |a Models, Molecular 
650 2 2 |a Molecular Conformation 
650 2 2 |a Phase Transition 
650 1 2 |a Phospholipids  |x chemistry 
653 |a Lipids 
653 |a Molecules 
653 |a Biophysics 
653 |a Membrane separation 
653 |a Environmental 
700 1 |a Voth, Gregory A 
773 0 |t Biophysical Journal  |g vol. 89, no. 4 (Oct 2005), p. 2385-2394 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/215700965/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/215700965/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch