A Computational Study of the Closed and Open States of the Influenza A M2 Proton Channel

Guardat en:
Dades bibliogràfiques
Publicat a:Biophysical Journal vol. 89, no. 4 (Oct 2005), p. 2402-2411
Autor principal: Wu, Yujie
Altres autors: Voth, Gregory A
Publicat:
Biophysical Society
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 215701810
003 UK-CbPIL
022 |a 0006-3495 
022 |a 1542-0086 
035 |a 215701810 
045 2 |b d20051001  |b d20051031 
084 |a 16040757 
084 |a 36123  |2 nlm 
100 1 |a Wu, Yujie 
245 1 |a A Computational Study of the Closed and Open States of the Influenza A M2 Proton Channel 
260 |b Biophysical Society  |c Oct 2005 
513 |a Journal Article 
520 3 |a In this study, four possible conformations of the His-37 and Trp-41 residues for the closed state of the influenza M2 ion channel were identified by a conformation scan based on a solid-state NMR restraint. In the four conformations, the His-37 residue can be of either the t-160 or t60 rotamer, whereas Trp-41 can be of either the t-105 or t90 rotamer. These conformations were further analyzed by density functional theory calculations and molecular dynamics simulations, and the data indicate that the His-37 residue most likely adopts the 160 rotamer and should be monoprotonated at the δ-nitrogen site, whereas Trp-41 adopts the t90 rotamer. This result is consistent with published experimental data and points to a simple gating mechanism: in the closed state, the His-37 and Trp-41 residues adopt the (t60, t90) conformation, which nearly occludes the pore, preventing nonproton ions from passing through due to the steric and desolvation effects. Moreover, the His-37 tetrad interrupts the otherwise continuous hydrogen-bonding network of the pore water by forcing the water molecules above and below it to adopt opposite orientations, thus adding to the blockage of proton shuttling. The channel can be easily opened by rotating the His-37^sub χ2^ angle from 60 to 0°. This open structure allows pore water to penetrate the constrictive region and to form a continuous water wire for protons to shuttle through, while being still narrow enough to exclude other ions. [PUBLICATION ABSTRACT]   In this study, four possible conformations of the His-37 and Trp-41 residues for the closed state of the influenza M2 ion channel were identified by a conformation scan based on a solid-state NMR restraint. In the four conformations, the His-37 residue can be of either the t-160 or t60 rotamer, whereas Trp-41 can be of either the t-105 or t90 rotamer. These conformations were further analyzed by density functional theory calculations and molecular dynamics simulations, and the data indicate that the His-37 residue most likely adopts the t60 rotamer and should be monoprotonated at the delta-nitrogen site, whereas Trp-41 adopts the t90 rotamer. This result is consistent with published experimental data and points to a simple gating mechanism: in the closed state, the His-37 and Trp-41 residues adopt the (t60, t90) conformation, which nearly occludes the pore, preventing nonproton ions from passing through due to the steric and desolvation effects. Moreover, the His-37 tetrad interrupts the otherwise continuous hydrogen-bonding network of the pore water by forcing the water molecules above and below it to adopt opposite orientations, thus adding to the blockage of proton shuttling. The channel can be easily opened by rotating the His-37 chi2 angle from 60 to 0 degrees . This open structure allows pore water to penetrate the constrictive region and to form a continuous water wire for protons to shuttle through, while being still narrow enough to exclude other ions. 
650 2 2 |a Computer Simulation 
650 1 2 |a Ion Channel Gating 
650 1 2 |a Ion Channels  |x chemistry 
650 2 2 |a Models, Biological 
650 1 2 |a Models, Chemical 
650 1 2 |a Models, Molecular 
650 2 2 |a Porosity 
650 2 2 |a Protein Conformation 
650 1 2 |a Proton Pumps  |x chemistry 
650 2 2 |a Structure-Activity Relationship 
650 1 2 |a Viral Matrix Proteins  |x chemistry 
653 |a Influenza 
653 |a Protons 
653 |a Biophysics 
653 |a Simulation 
653 |a Molecules 
653 |a Bacterial proteins 
653 |a Residues 
653 |a Pore water 
653 |a Ions 
653 |a Environmental 
700 1 |a Voth, Gregory A 
773 0 |t Biophysical Journal  |g vol. 89, no. 4 (Oct 2005), p. 2402-2411 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/215701810/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/215701810/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/215701810/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch