Multiple-Bond Kinetics from Single-Molecule Pulling Experiments: Evidence for Multiple NCAM Bonds

Salvato in:
Dettagli Bibliografici
Pubblicato in:Biophysical Journal vol. 89, no. 5 (Nov 2005), p. 3434-3445
Autore principale: Hukkanen, E J
Altri autori: Wieland, J A, Gewirth, A, Leckband, D E, Braatz, R D
Pubblicazione:
Biophysical Society
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 215705534
003 UK-CbPIL
022 |a 0006-3495 
022 |a 1542-0086 
035 |a 215705534 
045 2 |b d20051101  |b d20051130 
084 |a 16100278 
084 |a 36123  |2 nlm 
100 1 |a Hukkanen, E J 
245 1 |a Multiple-Bond Kinetics from Single-Molecule Pulling Experiments: Evidence for Multiple NCAM Bonds 
260 |b Biophysical Society  |c Nov 2005 
513 |a Journal Article 
520 3 |a The kinetic parameters of single bonds between neural cell adhesion molecules were determined from atomic force microscope measurements of the forced dissociation of the homophilic protein-protein bonds. The analytical approach described provides a systematic procedure for obtaining rupture kinetics for single protein bonds from bond breakage frequency distributions obtained from single-molecule pulling experiments. For these studies, we used the neural cell adhesion molecule (NCAM), which was recently shown to form two independent protein bonds. The analysis of the bond rupture data at different loading rates, using the single-bond full microscopic model, indicates that the breakage frequency distribution is most sensitive to the distance to the transition state and least sensitive to the molecular spring constant. The analysis of bond failure data, however, motivates the use of a double-bond microscopic model that requires an additional kinetic parameter. This double-bond microscopic model assumes two independent NCAM-NCAM bonds, and more accurately describes the breakage frequency distribution, particularly at high loading rates. This finding agrees with recent surface-force measurements, which showed that NCAM forms two spatially distinct bonds between opposed proteins. [PUBLICATION ABSTRACT]   The kinetic parameters of single bonds between neural cell adhesion molecules were determined from atomic force microscope measurements of the forced dissociation of the homophilic protein-protein bonds. The analytical approach described provides a systematic procedure for obtaining rupture kinetics for single protein bonds from bond breakage frequency distributions obtained from single-molecule pulling experiments. For these studies, we used the neural cell adhesion molecule (NCAM), which was recently shown to form two independent protein bonds. The analysis of the bond rupture data at different loading rates, using the single-bond full microscopic model, indicates that the breakage frequency distribution is most sensitive to the distance to the transition state and least sensitive to the molecular spring constant. The analysis of bond failure data, however, motivates the use of a double-bond microscopic model that requires an additional kinetic parameter. This double-bond microscopic model assumes two independent NCAM-NCAM bonds, and more accurately describes the breakage frequency distribution, particularly at high loading rates. This finding agrees with recent surface-force measurements, which showed that NCAM forms two spatially distinct bonds between opposed proteins. 
650 2 2 |a Animals 
650 2 2 |a Biophysics  |x methods 
650 2 2 |a CHO Cells 
650 2 2 |a Computer Simulation 
650 2 2 |a Cricetinae 
650 2 2 |a Kinetics 
650 2 2 |a Likelihood Functions 
650 1 2 |a Microscopy, Atomic Force  |x methods 
650 2 2 |a Models, Chemical 
650 2 2 |a Models, Statistical 
650 2 2 |a Models, Theoretical 
650 1 2 |a Neural Cell Adhesion Molecules  |x chemistry 
650 2 2 |a Polyethylene Glycols  |x chemistry 
650 2 2 |a Pressure 
650 2 2 |a Protein Binding 
650 2 2 |a Software 
650 2 2 |a Time Factors 
653 |a Chemical bonds 
653 |a Biochemistry 
653 |a Proteins 
653 |a Molecules 
653 |a Frequency distribution 
653 |a Adhesion 
653 |a Environmental 
700 1 |a Wieland, J A 
700 1 |a Gewirth, A 
700 1 |a Leckband, D E 
700 1 |a Braatz, R D 
773 0 |t Biophysical Journal  |g vol. 89, no. 5 (Nov 2005), p. 3434-3445 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/215705534/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/215705534/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch