Atomistic simulations of competition between substrates binding to an enzyme

Uloženo v:
Podrobná bibliografie
Vydáno v:Biophysical Journal vol. 82, no. 5 (May 2002), p. 2326-2332
Hlavní autor: Elcock, Adrian H
Vydáno:
Biophysical Society
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 215711044
003 UK-CbPIL
022 |a 0006-3495 
022 |a 1542-0086 
035 |a 215711044 
045 2 |b d20020501  |b d20020531 
084 |a 11964223 
084 |a 36123  |2 nlm 
100 1 |a Elcock, Adrian H 
245 1 |a Atomistic simulations of competition between substrates binding to an enzyme 
260 |b Biophysical Society  |c May 2002 
513 |a Journal Article 
520 3 |a Although the idea that electrostatic potentials generated by enzymes can guide substrates to active sites is well established, it is not always apppreciated that the same potentials can also promote the binding of molecules other than the intneded substrate, with the result that such enzymes might be snesitive to the presence of competing molecules. To provide a novel means of studying such "electrostatic competition" effects, computer simulation methodology has been developed to allow the diffusion and association of many solute molecules around a single enzyme to be simulated.   Although the idea that electrostatic potentials generated by enzymes can guide substrates to active sites is well established, it is not always appreciated that the same potentials can also promote the binding of molecules other than the intended substrate, with the result that such enzymes might be sensitive to the presence of competing molecules. To provide a novel means of studying such "electrostatic competition" effects, computer simulation methodology has been developed to allow the diffusion and association of many solute molecules around a single enzyme to be simulated. To demonstrate the power of the methodology, simulations have been conducted on an artificial fusion protein of citrate synthase (CS) and malate dehydrogenase (MDH) to assess the chances of oxaloacetate being channeled between the MDH and CS active sites. The simulations demonstrate that the probability of channeling is strongly dependent on the concentration of the initial substrate (malate) in the solution. In fact, the high concentrations of malate used in experiments appear high enough to abolish any channeling of oxaloacetate. The simulations provide a resolution of a serious discrepancy between previous simulations and experiments and raise important questions relating to the observability of electrostatically mediated substrate channeling in vitro and in vivo. 
650 2 2 |a Binding Sites 
650 1 2 |a Citrate (si)-Synthase  |x chemistry 
650 2 2 |a Citrate (si)-Synthase  |x metabolism 
650 2 2 |a Computer Simulation 
650 2 2 |a Enzymes  |x chemistry 
650 1 2 |a Enzymes  |x metabolism 
650 2 2 |a Kinetics 
650 2 2 |a Malates  |x chemistry 
650 2 2 |a Models, Molecular 
650 2 2 |a Models, Theoretical 
650 2 2 |a Osmolar Concentration 
650 2 2 |a Protein Conformation 
650 2 2 |a Recombinant Fusion Proteins  |x chemistry 
650 2 2 |a Recombinant Fusion Proteins  |x metabolism 
650 2 2 |a Static Electricity 
650 2 2 |a Substrate Specificity 
653 |a Molecules 
653 |a Computer based modeling 
653 |a Environmental 
773 0 |t Biophysical Journal  |g vol. 82, no. 5 (May 2002), p. 2326-2332 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/215711044/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/215711044/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/215711044/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch