Machine Learning for Optimal Parameter Prediction in Quantum Key Distribution

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jun 5, 2019), p. n/a
Autor principal: Wang, Wenyuan
Otros Autores: Hoi-Kwong Lo
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2159019415
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1103/PhysRevA.100.062334  |2 doi 
035 |a 2159019415 
045 0 |b d20190605 
100 1 |a Wang, Wenyuan 
245 1 |a Machine Learning for Optimal Parameter Prediction in Quantum Key Distribution 
260 |b Cornell University Library, arXiv.org  |c Jun 5, 2019 
513 |a Working Paper 
520 3 |a For a practical quantum key distribution (QKD) system, parameter optimization - the choice of intensities and probabilities of sending them - is a crucial step in gaining optimal performance, especially when one realistically considers finite communication time. With the increasing interest in the field to implement QKD over free-space on moving platforms, such as drones, handheld systems, and even satellites, one needs to perform parameter optimization with low latency and with very limited computing power. Moreover, with the advent of the Internet of Things (IoT), a highly attractive direction of QKD could be a quantum network with multiple devices and numerous connections, which provides a huge computational challenge for the controller that optimizes parameters for a large-scale network. Traditionally, such an optimization relies on brute-force search, or local search algorithms, which are computationally intensive, and will be slow on low-power platforms (which increases latency in the system) or infeasible for even moderately large networks. In this work we present a new method that uses a neural network to directly predict the optimal parameters for QKD systems. We test our machine learning algorithm on hardware devices including a Raspberry Pi 3 single-board-computer (similar devices are commonly used on drones) and a mobile phone, both of which have a power consumption of less than 5 watts, and we find a speedup of up to 100-1000 times when compared to standard local search algorithms. The predicted parameters are highly accurate and can preserve over 95-99% of the optimal secure key rate. Moreover, our approach is highly general and not limited to any specific QKD protocol. 
653 |a Parallel processing 
653 |a Background noise 
653 |a Quantum cryptography 
653 |a Misalignment 
653 |a Tables 
653 |a Neural networks 
653 |a Graphics processing units 
653 |a Convexity 
653 |a Electronic devices 
653 |a Optimization 
653 |a Search algorithms 
653 |a Machine learning 
653 |a Size effects 
653 |a Personal computers 
653 |a Predictions 
653 |a Parameters 
653 |a Computational geometry 
653 |a Computing time 
700 1 |a Hoi-Kwong Lo 
773 0 |t arXiv.org  |g (Jun 5, 2019), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2159019415/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1812.07724