Dynamics of Fluid Driven Autonomous Materials: Interconnected Fluid Filled Cavities to Realize Autonomous Materials

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:arXiv.org (Dec 3, 2021), p. n/a
Tác giả chính: Matia, Yoav
Tác giả khác: Gat, Amir D
Được phát hành:
Cornell University Library, arXiv.org
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full text outside of ProQuest
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 2159543474
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2159543474 
045 0 |b d20211203 
100 1 |a Matia, Yoav 
245 1 |a Dynamics of Fluid Driven Autonomous Materials: Interconnected Fluid Filled Cavities to Realize Autonomous Materials 
260 |b Cornell University Library, arXiv.org  |c Dec 3, 2021 
513 |a Working Paper 
520 3 |a The study of elastic structures embedded with fluid-filled cavities received considerable attention in fields such as autonomous materials, sensors, actuators, and smart systems. This work studies an elastic beam embedded with a set of fluid-filled bladders, similar to a honeycomb structure, which are interconnected via an array of slender tubes. The configuration of the connecting tubes is arbitrary, and each tube may connect any two bladders. Beam deformation both creates, and is induced by, the internal viscous flow- and pressure-fields which deform the bladders and thus the surrounding solid. Applying concepts from poroelasticity, and leveraging Cosserat beam large-deformation models, we obtain a set of three coupled equations relating the fluidic pressure within the bladders to the large transverse and longitudinal displacements of the beam. We show that by changing the viscous resistance of the connecting tubes we are able to modify the amplitude of oscillatory deformation modes created due to external excitations on the structure. In addition, rearranging tube configuration in a given bladder system is shown to add an additional degree of control, and generate varying mode shapes for the same external excitation. The presented modified Cosserat model is applied to analyze a previously suggested energy harvester configuration and estimate the efficiency of such a device. The results of this work are validated by a transient three-dimensional numerical study of the full fluid-structure-interaction problem. The presented model allows for the analysis and design of soft smart-metamaterials with unique mechanical properties. Keywords: autonomous materials, adaptive materials, programmed materials, smart systems, autonomous systems, soft matter, soft robotics, energy harvesting, fluid dynamics, fluid-structure interaction, large deformation. 
653 |a Robotics 
653 |a Composite beams 
653 |a Energy harvesting 
653 |a Bladder 
653 |a Excitation 
653 |a Metamaterials 
653 |a Elastic beams 
653 |a Honeycomb structures 
653 |a Deformation 
653 |a Mechanical properties 
653 |a Three dimensional models 
653 |a Smart materials 
653 |a Mathematical models 
653 |a Tubes 
653 |a Viscous flow 
653 |a Smart sensors 
653 |a Holes 
653 |a Configurations 
700 1 |a Gat, Amir D 
773 0 |t arXiv.org  |g (Dec 3, 2021), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2159543474/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1812.08717