Age-of-Information for Computation-Intensive Messages in Mobile Edge Computing

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jan 12, 2019), p. n/a
Autor principal: Kuang, Qiaobin
Otros Autores: Gong, Jie, Chen, Xiang, Ma, Xiao
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2165541913
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2165541913 
045 0 |b d20190112 
100 1 |a Kuang, Qiaobin 
245 1 |a Age-of-Information for Computation-Intensive Messages in Mobile Edge Computing 
260 |b Cornell University Library, arXiv.org  |c Jan 12, 2019 
513 |a Working Paper 
520 3 |a Age-of-information (AoI) is a novel metric that measures the freshness of information in status update scenarios. It is essential for real-time applications to transmit status update packets to the destination node as timely as possible. However, for some applications, status information embedded in the packets is not revealed until complicated data processing, which is computational expensive and time consuming. As mobile edge server has sufficient computational resource and is placed close to users, mobile edge computing (MEC) is expected to reduce age for computation-intensive messages. In this paper, we study the AoI for computation-intensive data in MEC, and consider two schemes: local computing by user itself and remote computing at MEC server. The two computing models are unified into a two-node tandem queuing model. Zero-wait policy is adopted, i.e., a new message is generated once the previous one leaves the first node. We consider exponentially distributed service time and infinite queue size, and hence, the second node can be seen as a First-Come-First-Served (FCFS) M/M/1 system. Closed-form average AoI is derived for the two computing schemes. The region where remote computing outperforms local computing is characterized. Simulation results show that the remote computing is greatly superior to the local computing when the remote computing rate is large enough, and that there exists an optimal transmission rate so that remote computing is better than local computing for a largest range. 
653 |a Remote computing 
653 |a Packet transmission 
653 |a Data processing 
653 |a Age 
653 |a Messages 
653 |a Freshness 
653 |a Queuing theory 
653 |a Queues 
653 |a Computer simulation 
653 |a Nodes 
653 |a Mobile computing 
653 |a Edge computing 
700 1 |a Gong, Jie 
700 1 |a Chen, Xiang 
700 1 |a Ma, Xiao 
773 0 |t arXiv.org  |g (Jan 12, 2019), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2165541913/abstract/embedded/160PP4OP4BJVV2EV?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1901.01854