Quadratically convergent algorithm for computing real root of non-linear transcendental equations
Đã lưu trong:
| Xuất bản năm: | BMC Research Notes vol. 11 (2018), p. 1 |
|---|---|
| Tác giả chính: | |
| Tác giả khác: | |
| Được phát hành: |
Springer Nature B.V.
|
| Những chủ đề: | |
| Truy cập trực tuyến: | Citation/Abstract Full Text Full Text - PDF |
| Các nhãn: |
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 2168602215 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 1756-0500 | ||
| 024 | 7 | |a 10.1186/s13104-018-4008-z |2 doi | |
| 035 | |a 2168602215 | ||
| 045 | 2 | |b d20180101 |b d20181231 | |
| 084 | |a 113109 |2 nlm | ||
| 100 | 1 | |a Thota, Srinivasarao | |
| 245 | 1 | |a Quadratically convergent algorithm for computing real root of non-linear transcendental equations | |
| 260 | |b Springer Nature B.V. |c 2018 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Objectives The present paper describes a new algorithm to find a root of non-linear transcendental equations. It is found that Regula-Falsi method always gives guaranteed result but slow convergence. However, Newton–Raphson method does not give guaranteed result but faster than Regula-Falsi method. Therefore, the present paper used these two ideas and developed a new algorithm which has better convergence than Regula-Falsi and guaranteed result. One of the major issue in Newton–Raphson method is, it fails when first derivative is zero or approximately zero. Results The proposed method implemented the failure condition of Newton–Raphson method with better convergence. Error calculation has been discussed for certain real life examples using Bisection, Regula-Falsi, Newton–Raphson method and new proposed method. The computed results show that the new proposed quadratically convergent method provides better convergence than other methods. | |
| 653 | |a Numerical analysis | ||
| 653 | |a Applied mathematics | ||
| 653 | |a Methods | ||
| 653 | |a Algorithms | ||
| 653 | |a Iterative methods | ||
| 653 | |a Convergence | ||
| 653 | |a Nonlinear equations | ||
| 653 | |a Engineers | ||
| 700 | 1 | |a Srivastav, Vivek Kumar | |
| 773 | 0 | |t BMC Research Notes |g vol. 11 (2018), p. 1 | |
| 786 | 0 | |d ProQuest |t Health & Medical Collection | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/2168602215/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/2168602215/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/2168602215/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |