Scaling out NUMA-Aware Applications with RDMA-Based Distributed Shared Memory
Guardat en:
| Publicat a: | Journal of Computer Science and Technology vol. 34, no. 1 (Jan 2019), p. 94 |
|---|---|
| Autor principal: | |
| Altres autors: | , , , , |
| Publicat: |
Springer Nature B.V.
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
| Resum: | The multicore evolution has stimulated renewed interests in scaling up applications on shared-memory multiprocessors, significantly improving the scalability of many applications. But the scalability is limited within a single node; therefore programmers still have to redesign applications to scale out over multiple nodes. This paper revisits the design and implementation of distributed shared memory (DSM) as a way to scale out applications optimized for non-uniform memory access (NUMA) architecture over a well-connected cluster. This paper presents MAGI, an efficient DSM system that provides a transparent shared address space with scalable performance on a cluster with fast network interfaces. MAGI is unique in that it presents a NUMA abstraction to fully harness the multicore resources in each node through hierarchical synchronization and memory management. MAGI also exploits the memory access patterns of big-data applications and leverages a set of optimizations for remote direct memory access (RDMA) to reduce the number of page faults and the cost of the coherence protocol. MAGI has been implemented as a user-space library with pthread-compatible interfaces and can run existing multithreaded applications with minimized modifications. We deployed MAGI over an 8-node RDMAenabled cluster. Experimental evaluation shows that MAGI achieves up to 9.25x speedup compared with an unoptimized implementation, leading to a scalable performance for large-scale data-intensive applications. |
|---|---|
| ISSN: | 1000-9000 1860-4749 |
| DOI: | 10.1007/s11390-019-1901-4 |
| Font: | ABI/INFORM Global |