Recent research advances in Reinforcement Learning in Spoken Dialogue Systems

Guardado en:
Detalles Bibliográficos
Publicado en:The Knowledge Engineering Review vol. 24, no. 4 (Dec 2009), p. 375-408
Autor principal: Frampton, Matthew
Otros Autores: Lemon, Oliver
Publicado:
Cambridge University Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 217516248
003 UK-CbPIL
022 |a 0269-8889 
022 |a 1469-8005 
024 7 |a 10.1017/S0269888909990166  |2 doi 
035 |a 217516248 
045 2 |b d20091201  |b d20091231 
084 |a 79065  |2 nlm 
100 1 |a Frampton, Matthew 
245 1 |a Recent research advances in Reinforcement Learning in Spoken Dialogue Systems 
260 |b Cambridge University Press  |c Dec 2009 
513 |a Feature 
520 3 |a This paper will summarize and analyze the work of the different research groups who have recently made significant contributions in using Reinforcement Learning techniques to learn dialogue strategies for Spoken Dialogue Systems (SDSs). This use of stochastic planning and learning has become an important research area in the past 10 years, since it promises automatic data-driven optimization of the behavior of SDSs that were previously hand-coded by expert developers. We survey the most important developments in the field, compare and contrast the different approaches, and describe current open problems. [PUBLICATION ABSTRACT] 
653 |a Information technology 
653 |a User interface 
653 |a Voice recognition 
653 |a Machine learning 
653 |a Research 
653 |a Simulation 
653 |a Design 
653 |a Probability 
653 |a Markov analysis 
653 |a Interactive computer systems 
653 |a Artificial intelligence 
700 1 |a Lemon, Oliver 
773 0 |t The Knowledge Engineering Review  |g vol. 24, no. 4 (Dec 2009), p. 375-408 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/217516248/abstract/embedded/160PP4OP4BJVV2EV?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/217516248/fulltextPDF/embedded/160PP4OP4BJVV2EV?source=fedsrch