ANALYSIS OF THE TERRESTRIAL POLE COORDINATES USING REGRESSION DYNAMIC MODELING

Gardado en:
Detalles Bibliográficos
Publicado en:International Multidisciplinary Scientific GeoConference : SGEM vol. 18, no. 2.2 (2018), p. 73
Autor Principal: Andreev, Alexey
Outros autores: Nefedyev, Yury, Mubarakshina, Regina, Demina, Natalya, Demin, Sergey
Publicado:
Surveying Geology & Mining Ecology Management (SGEM)
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2185857199
003 UK-CbPIL
022 |a 1314-2704 
024 7 |a 10.5593/sgem2018/2.2/S08.010  |2 doi 
035 |a 2185857199 
045 0 |b d20180101 
084 |a 176728  |2 nlm 
100 1 |a Andreev, Alexey  |u Kazan Federal University, Kazan, Russia 
245 1 |a ANALYSIS OF THE TERRESTRIAL POLE COORDINATES USING REGRESSION DYNAMIC MODELING 
260 |b Surveying Geology & Mining Ecology Management (SGEM)  |c 2018 
513 |a Conference Proceedings 
520 3 |a For processing observations of the terrestrial pole dynamics, the regression dynamic modeling (RDM) approach was used. With the RDM software package the models describing the dynamics of the terrestrial polar coordinates were built. This approach provides accurate combined models of observations which describe to some extent causal and deterministic communication and provide forecast of characteristics. A comparison of observations and predicted values of the terrestrial polar coordinates obtained with the RDM approach and by other researchers is performed. To solve the problem, the expansion of the RDM automated systems was made. The basic version is supplemented by new software modules for the developed technique and geophysical observations features. The RDM software package intended for processing geophysical characteristics contains the modules as follows: 1) A spectral window to transform uneven observations to even ones; 2) Cross-spectral analysis to identify common significant harmonics of two observations; 3) Kalman Filter to eliminate noise from the residues of a model; 4) Fractal analysis to verify the series on trendstability; 5) Set of wavelets; 6) Processing scenarios to build the best on the "external" standard deviation model of (SD) model of Time series (TS) automatically. 
651 4 |a North Pole 
653 |a Research 
653 |a Analysis 
653 |a Software packages 
653 |a Fractal analysis 
653 |a Modelling 
653 |a Communication 
653 |a Software 
653 |a Polar coordinates 
653 |a Researchers 
653 |a Spectral analysis 
653 |a Modules 
653 |a Time series 
653 |a Dynamic models 
653 |a Terrestrial environments 
653 |a Wavelet analysis 
653 |a Fractal models 
653 |a Kalman filters 
653 |a Dynamics 
653 |a Computer programs 
653 |a Physics 
653 |a Hypotheses 
653 |a Geophysics 
653 |a Stochastic models 
653 |a Regression analysis 
653 |a Computer software 
653 |a Economic 
653 |a Environmental 
700 1 |a Nefedyev, Yury  |u Kazan Federal University, Kazan, Russia 
700 1 |a Mubarakshina, Regina  |u Kazan Federal University, Kazan, Russia 
700 1 |a Demina, Natalya  |u Kazan Federal University, Kazan, Russia 
700 1 |a Demin, Sergey  |u Kazan Federal University, Kazan, Russia 
773 0 |t International Multidisciplinary Scientific GeoConference : SGEM  |g vol. 18, no. 2.2 (2018), p. 73 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2185857199/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2185857199/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2185857199/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch