Study of Sparsity-Aware Reduced-Dimension Beam-Doppler Space-Time Adaptive Processing
Guardado en:
| Publicado en: | arXiv.org (Mar 5, 2019), p. n/a |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
Cornell University Library, arXiv.org
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full text outside of ProQuest |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Existing reduced-dimension beam-Doppler space-time adaptive processing (RD-BD-STAP) algorithms are confined to the beam-Doppler cells used for adaptation, which often leads to some performance degradation. In this work, a novel sparsity-aware RD-BD-STAP algorithm, denoted Sparse Constraint on Beam-Doppler Selection Reduced-Dimension Space-Time Adaptive Processing (SCBDS-RD-STAP), is proposed can adaptively selects the best beam-Doppler cells for adaptation. The proposed SCBDS-RD-STAP approach formulates the filter design as a sparse representation problem and enforcing most of the elements in the weight vector to be zero (or sufficiently small in amplitude). Simulation results illustrate that the proposed SCBDS-RD-STAP algorithm outperforms the traditional RD-BD-STAP approaches with fixed beam-Doppler localized processing. |
|---|---|
| ISSN: | 2331-8422 |
| Fuente: | Engineering Database |