Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage vol. 185 (Jan 15, 2019), p. 12
1. Verfasser: Spisák, Tamás
Weitere Verfasser: Spisák, Zsófia, Zunhammer, Matthias, Bingel, Ulrike, Smith, Stephen, Nichols, Thomas, Kincses, Tamás
Veröffentlicht:
Elsevier Limited
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 2190982844
003 UK-CbPIL
022 |a 1053-8119 
022 |a 1095-9572 
024 7 |a 10.1016/j.neuroimage.2018.09.078  |2 doi 
035 |a 2190982844 
045 0 |b d20190115 
084 |a 221628  |2 nlm 
100 1 |a Spisák, Tamás  |u Department of Neurology, University Hospital Essen, Essen, Germany 
245 1 |a Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power 
260 |b Elsevier Limited  |c Jan 15, 2019 
513 |a Journal Article 
520 3 |a The threshold-free cluster enhancement (TFCE) approach integrates cluster information into voxel-wise statistical inference to enhance detectability of neuroimaging signal. Despite the significantly increased sensitivity, the application of TFCE is limited by several factors: (i) generalisation to data structures, like brain network connectivity data is not trivial, (ii) TFCE values are in an arbitrary unit, therefore, P-values can only be obtained by a computationally demanding permutation-test.Here, we introduce a probabilistic approach for TFCE (pTFCE), that gives a simple general framework for topology-based belief boosting.The core of pTFCE is a conditional probability, calculated based on Bayes' rule, from the probability of voxel intensity and the threshold-wise likelihood function of the measured cluster size. In this paper, we provide an estimation of these distributions based on Gaussian Random Field theory. The conditional probabilities are then aggregated across cluster-forming thresholds by a novel incremental aggregation method. pTFCE is validated on simulated and real fMRI data.The results suggest that pTFCE is more robust to various ground truth shapes and provides a stricter control over cluster “leaking” than TFCE and, in many realistic cases, further improves its sensitivity.Correction for multiple comparisons can be trivially performed on the enhanced P-values, without the need for permutation testing, thus pTFCE is well-suitable for the improvement of statistical inference in any neuroimaging workflow.Implementation of pTFCE is available at <ce:inter-ref xlink:href="https://spisakt.github.io/pTFCE" id="intref0010">https://spisakt.github.io/pTFCE</ce:inter-ref>. 
653 |a Statistics 
653 |a Data processing 
653 |a Volumetric analysis 
653 |a Theory 
653 |a Three dimensional imaging 
653 |a Datasets 
653 |a Bayesian analysis 
653 |a Functional magnetic resonance imaging 
653 |a Localization 
653 |a Medical imaging 
653 |a Neuroimaging 
653 |a Neural networks 
653 |a Brain mapping 
653 |a Statistical power 
700 1 |a Spisák, Zsófia 
700 1 |a Zunhammer, Matthias  |u Department of Neurology, University Hospital Essen, Essen, Germany 
700 1 |a Bingel, Ulrike  |u Department of Neurology, University Hospital Essen, Essen, Germany 
700 1 |a Smith, Stephen  |u Wellcome Centre For Integrative Neuroimaging (FMRIB), University of Oxford, Oxford, United Kingdom 
700 1 |a Nichols, Thomas  |u Wellcome Centre For Integrative Neuroimaging (FMRIB), University of Oxford, Oxford, United Kingdom; Department of Statistics, University of Warwick, Coventry, United Kingdom 
700 1 |a Kincses, Tamás  |u Department of Neurology, University of Szeged, Szeged, Hungary 
773 0 |t NeuroImage  |g vol. 185 (Jan 15, 2019), p. 12 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2190982844/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2190982844/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2190982844/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch