Visual Tool for Learning GPU Programming

Guardat en:
Dades bibliogràfiques
Publicat a:The International Scientific Conference eLearning and Software for Education vol. 1 (2019), p. 429
Autor principal: Vulcan, Alexandru Mihai
Altres autors: Nicolaie, Maximilian, Pietraru, Radu Nicolae
Publicat:
"Carol I" National Defence University
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2213798420
003 UK-CbPIL
024 7 |a 10.12753/2066-026X-19-057  |2 doi 
035 |a 2213798420 
045 2 |b d20190101  |b d20191231 
084 |a 185028  |2 nlm 
100 1 |a Vulcan, Alexandru Mihai 
245 1 |a Visual Tool for Learning GPU Programming 
260 |b "Carol I" National Defence University  |c 2019 
513 |a Conference Proceedings 
520 3 |a Graphic Processing Units (GPUs) are unanimously considered as powerful computational resources. General-purpose computing on GPU (GPGPU), as well, is the de facto infrastructure for most of the today computationally intensive problems that researchers all over the globe dill with. High Performance Computing (HPC) facilities use state of the art GPUs. Many domains like deep learning, machine learning, and computational finance uses GPU's for decreasing the execution time. GPUs are widely used in data centers for high performance computing where virtualization techniques are intended for optimizing the resource utilization (e.g. GPU cloud computing). The GPU programming model requires for all the data to be stored in a global memory before it is used. This limits the dimension of the problem a GPU can handle. A system utilizing a cluster of GPU would have a bigger level of parallelization but also would eliminate the memory limitation imposed by a single GPU. These being just a few of the problems a programmer needs to handle. However, the ratio between specialists that are able to efficiently program such processors and the rest of programmers is very small. One important reason for this situation is the steepness of the GPU programming learning curve due to the complex parallel architecture of the processor. Therefore, the tool presented in this article aims to provide visual support for a better understanding of the execution on GPU. With it, the programmers can easily observe the trace of the parallel execution on their own algorithm and, from that, they could determine the unused GPU capacity that could be better exploited. 
653 |a International conferences 
653 |a Data centers 
653 |a Parallel processing 
653 |a Software 
653 |a Students 
653 |a Computer science 
653 |a Curricula 
653 |a Graphics processing units 
653 |a Multimedia 
653 |a Microprocessors 
653 |a Science education 
653 |a Cloud computing 
653 |a Programmers 
653 |a Programming 
653 |a Algorithms 
653 |a Learning curves 
653 |a Machine learning 
653 |a Slopes 
653 |a Domains 
653 |a Employment 
653 |a Manufacturing 
653 |a Student Needs 
653 |a Architecture 
653 |a Learning Processes 
653 |a Mathematics 
653 |a Visual Aids 
653 |a Science Curriculum 
653 |a Computer Software 
653 |a Libraries 
700 1 |a Nicolaie, Maximilian 
700 1 |a Pietraru, Radu Nicolae 
773 0 |t The International Scientific Conference eLearning and Software for Education  |g vol. 1 (2019), p. 429 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2213798420/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2213798420/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2213798420/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch