Analysis of heterogeneous computing approaches to simulating heat transfer in heterogeneous material

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (May 18, 2019), p. n/a
Autor principal: Loeb, Andrew
Otros Autores: Earls, Christopher
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2228404537
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2228404537 
045 0 |b d20190518 
100 1 |a Loeb, Andrew 
245 1 |a Analysis of heterogeneous computing approaches to simulating heat transfer in heterogeneous material 
260 |b Cornell University Library, arXiv.org  |c May 18, 2019 
513 |a Working Paper 
520 3 |a The simulation of heat flow through heterogeneous material is important for the design of structural and electronic components. Classical analytical solutions to the heat equation PDE are not known for many such domains, even those having simple geometries. The finite element method can provide approximations to a weak form continuum solution, with increasing accuracy as the number of degrees of freedom in the model increases. This comes at a cost of increased memory usage and computation time; even when taking advantage of sparse matrix techniques for the finite element system matrix. We summarize recent approaches in solving problems in structural mechanics and steady state heat conduction which do not require the explicit assembly of any system matrices, and adapt them to a method for solving the time-depended flow of heat. These approaches are highly parallelizable, and can be performed on graphical processing units (GPUs). Furthermore, they lend themselves to the simulation of heterogeneous material, with a minimum of added complexity. We present the mathematical framework of assembly-free FEM approaches, through which we summarize the benefits of GPU computation. We discuss our implementation using the OpenCL computing framework, and show how it is further adapted for use on multiple GPUs. We compare the performance of single and dual GPUs implementations of our method with previous GPU computing strategies from the literature and a CPU sparse matrix approach. The utility of the novel method is demonstrated through the solution of a real-world coefficient inverse problem that requires thousands of transient heat flow simulations, each of which involves solving a 1 million degree of freedom linear system over hundreds of time steps. 
653 |a Sparsity 
653 |a Thermodynamics 
653 |a Assembly 
653 |a Parallel processing 
653 |a Finite element method 
653 |a Simulation 
653 |a Computation 
653 |a Conductive heat transfer 
653 |a Graphics processing units 
653 |a Inverse problems 
653 |a Conduction heating 
653 |a Matrix methods 
653 |a Electronic components 
653 |a Heat transmission 
653 |a Exact solutions 
653 |a Mathematical models 
653 |a Degrees of freedom 
653 |a Domains 
653 |a Computer simulation 
653 |a Computer memory 
700 1 |a Earls, Christopher 
773 0 |t arXiv.org  |g (May 18, 2019), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2228404537/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1905.07622