Dynamic Adaptation of Software-defined Networks for IoT Systems: A Search-based Approach

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (May 15, 2020), p. n/a
Autor principal: Shin, Seung Yeob
Otros Autores: Nejati, Shiva, Sabetzadeh, Mehrdad, Briand, Lionel C, Arora, Chetan, Zimmer, Frank
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2232976536
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1145/3387939.3391603  |2 doi 
035 |a 2232976536 
045 0 |b d20200515 
100 1 |a Shin, Seung Yeob 
245 1 |a Dynamic Adaptation of Software-defined Networks for IoT Systems: A Search-based Approach 
260 |b Cornell University Library, arXiv.org  |c May 15, 2020 
513 |a Working Paper 
520 3 |a The concept of Internet of Things (IoT) has led to the development of many complex and critical systems such as smart emergency management systems. IoT-enabled applications typically depend on a communication network for transmitting large volumes of data in unpredictable and changing environments. These networks are prone to congestion when there is a burst in demand, e.g., as an emergency situation is unfolding, and therefore rely on configurable software-defined networks (SDN). In this paper, we propose a dynamic adaptive SDN configuration approach for IoT systems. The approach enables resolving congestion in real time while minimizing network utilization, data transmission delays and adaptation costs. Our approach builds on existing work in dynamic adaptive search-based software engineering (SBSE) to reconfigure an SDN while simultaneously ensuring multiple quality of service criteria. We evaluate our approach on an industrial national emergency management system, which is aimed at detecting disasters and emergencies, and facilitating recovery and rescue operations by providing first responders with a reliable communication infrastructure. Our results indicate that (1) our approach is able to efficiently and effectively adapt an SDN to dynamically resolve congestion, and (2) compared to two baseline data forwarding algorithms that are static and non-adaptive, our approach increases data transmission rate by a factor of at least 3 and decreases data loss by at least 70%. 
653 |a Adaptive systems 
653 |a Congestion 
653 |a Internet of Things 
653 |a Data loss 
653 |a Changing environments 
653 |a Emergency management 
653 |a Emergency response 
653 |a Data transmission 
653 |a Rescue operations 
653 |a Software engineering 
653 |a Adaptive search techniques 
653 |a Management systems 
653 |a Disaster management 
653 |a Adaptive algorithms 
653 |a Software 
653 |a Adaptation 
653 |a Software-defined networking 
653 |a Transmission rate (communications) 
653 |a Networks 
653 |a Configurable programs 
700 1 |a Nejati, Shiva 
700 1 |a Sabetzadeh, Mehrdad 
700 1 |a Briand, Lionel C 
700 1 |a Arora, Chetan 
700 1 |a Zimmer, Frank 
773 0 |t arXiv.org  |g (May 15, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2232976536/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1905.12763