Total variation vs L1 regularization: a comparison of compressive sensing optimization methods for chemical detection

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Jun 25, 2019), p. n/a
Autor principal: Farnell, Elin
Outros Autores: Kvinge, Henry, Dupuis, Julia R, Kirby, Michael, Peterson, Chris, Schundler, Elizabeth C
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 2247256103
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2247256103 
045 0 |b d20190625 
100 1 |a Farnell, Elin 
245 1 |a Total variation vs L1 regularization: a comparison of compressive sensing optimization methods for chemical detection 
260 |b Cornell University Library, arXiv.org  |c Jun 25, 2019 
513 |a Working Paper 
520 3 |a One of the fundamental assumptions of compressive sensing (CS) is that a signal can be reconstructed from a small number of samples by solving an optimization problem with the appropriate regularization term. Two standard regularization terms are the L1 norm and the total variation (TV) norm. We present a comparison of CS reconstruction results based on these two approaches in the context of chemical detection, and we demonstrate that optimization based on the L1 norm outperforms optimization based on the TV norm. Our comparison is driven by CS sampling, reconstruction, and chemical detection in two real-world datasets: the Physical Sciences Inc. Fabry-P\'{e}rot interferometer sensor multispectral dataset and the Johns Hopkins Applied Physics Lab FTIR-based longwave infrared sensor hyperspectral dataset. Both datasets contain the release of a chemical simulant such as glacial acetic acid, triethyl phosphate, and sulfur hexafluoride. For chemical detection we use the adaptive coherence estimator (ACE) and bulk coherence, and we propose algorithmic ACE thresholds to define the presence or absence of a chemical of interest in both un-compressed data cubes and reconstructed data cubes. The un-compressed data cubes provide an approximate ground truth. We demonstrate that optimization based on either the L1 norm or TV norm results in successful chemical detection at a compression rate of 90%, but we show that L1 optimization is preferable. We present quantitative comparisons of chemical detection on reconstructions from the two methods, with an emphasis on the number of pixels with an ACE value above the threshold. 
653 |a Regularization 
653 |a Organic chemistry 
653 |a Datasets 
653 |a Online analytical processing 
653 |a Infrared detectors 
653 |a Acetic acid 
653 |a Physical sciences 
653 |a Ground truth 
653 |a Optimization 
653 |a Reconstruction 
653 |a Cubes 
653 |a Coherence 
653 |a Sulfur hexafluoride 
653 |a Chemical detection 
700 1 |a Kvinge, Henry 
700 1 |a Dupuis, Julia R 
700 1 |a Kirby, Michael 
700 1 |a Peterson, Chris 
700 1 |a Schundler, Elizabeth C 
773 0 |t arXiv.org  |g (Jun 25, 2019), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2247256103/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1906.10603