More chemical detection through less sampling: amplifying chemical signals in hyperspectral data cubes through compressive sensing

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jun 27, 2019), p. n/a
Autor principal: Kvinge, Henry
Otros Autores: Farnell, Elin, Dupuis, Julia R, Kirby, Michael, Peterson, Chris, Schundler, Elizabeth C
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2248794994
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2248794994 
045 0 |b d20190627 
100 1 |a Kvinge, Henry 
245 1 |a More chemical detection through less sampling: amplifying chemical signals in hyperspectral data cubes through compressive sensing 
260 |b Cornell University Library, arXiv.org  |c Jun 27, 2019 
513 |a Working Paper 
520 3 |a Compressive sensing (CS) is a method of sampling which permits some classes of signals to be reconstructed with high accuracy even when they were under-sampled. In this paper we explore a phenomenon in which bandwise CS sampling of a hyperspectral data cube followed by reconstruction can actually result in amplification of chemical signals contained in the cube. Perhaps most surprisingly, chemical signal amplification generally seems to increase as the level of sampling decreases. In some examples, the chemical signal is significantly stronger in a data cube reconstructed from 10% CS sampling than it is in the raw, 100% sampled data cube. We explore this phenomenon in two real-world datasets including the Physical Sciences Inc. Fabry-P\'{e}rot interferometer sensor multispectral dataset and the Johns Hopkins Applied Physics Lab FTIR-based longwave infrared sensor hyperspectral dataset. Each of these datasets contains the release of a chemical simulant, such as glacial acetic acid, triethyl phospate, and sulfur hexafluoride, and in all cases we use the adaptive coherence estimator (ACE) to detect a target signal in the hyperspectral data cube. We end the paper by suggesting some theoretical justifications for why chemical signals would be amplified in CS sampled and reconstructed hyperspectral data cubes and discuss some practical implications. 
653 |a Organic chemistry 
653 |a Datasets 
653 |a Online analytical processing 
653 |a Acetic acid 
653 |a Infrared detectors 
653 |a Software reviews 
653 |a Physical sciences 
653 |a Amplification 
653 |a Target detection 
653 |a Satellites 
653 |a Cubes 
653 |a Sulfur hexafluoride 
653 |a Sampling 
653 |a Chemical detection 
700 1 |a Farnell, Elin 
700 1 |a Dupuis, Julia R 
700 1 |a Kirby, Michael 
700 1 |a Peterson, Chris 
700 1 |a Schundler, Elizabeth C 
773 0 |t arXiv.org  |g (Jun 27, 2019), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2248794994/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1906.11818