GRASP to minimize makespan for a capacitated batch-processing machine

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:The International Journal of Advanced Manufacturing Technology vol. 68, no. 1-4 (Sep 2013), p. 407
मुख्य लेखक: Damodaran, Purushothaman
अन्य लेखक: Ghrayeb, Omar, Guttikonda, Mallika Chowdary
प्रकाशित:
Springer Nature B.V.
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 2262369827
003 UK-CbPIL
022 |a 0268-3768 
022 |a 1433-3015 
024 7 |a 10.1007/s00170-013-4737-z  |2 doi 
035 |a 2262369827 
045 2 |b d20130901  |b d20130930 
100 1 |a Damodaran, Purushothaman  |u Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, USA 
245 1 |a GRASP to minimize makespan for a capacitated batch-processing machine 
260 |b Springer Nature B.V.  |c Sep 2013 
513 |a Journal Article 
520 3 |a This paper presents a Greedy Randomized Adaptive Search Procedure (GRASP) to minimize the makespan of a capacitated batch-processing machine. Given a set of jobs and their processing times and sizes, the objective is to group these jobs into batches and schedule the batches on a single batch-processing machine such that the time taken to complete the last batch of jobs (or makespan) is minimized. The batch-processing machine can process a batch of jobs simultaneously as long as the total size of all the jobs in that batch does not exceed the machine capacity. The batch-processing time is equal to the longest processing time for a job in the batch. It has been shown that the problem under study is non-deterministic polynomial-time hard. Consequently, a GRASP approach was developed. The solution quality of GRASP was compared to other solution approaches such as simulated annealing, genetic algorithm, and a commercial solver through an experimental study. The study helps to conclude that GRASP outperforms other solution approaches, especially on larger problem instances. 
653 |a Production scheduling 
653 |a Batch processing 
653 |a Genetic algorithms 
653 |a Simulated annealing 
653 |a Sequential scheduling 
653 |a Adaptive search techniques 
653 |a Computer simulation 
653 |a Polynomials 
653 |a Schedules 
700 1 |a Ghrayeb, Omar  |u Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, USA 
700 1 |a Guttikonda, Mallika Chowdary  |u Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, USA 
773 0 |t The International Journal of Advanced Manufacturing Technology  |g vol. 68, no. 1-4 (Sep 2013), p. 407 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2262369827/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2262369827/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch