Genetic algorithms for minimizing makespan in a flow shop with two capacitated batch processing machines

Sparad:
Bibliografiska uppgifter
I publikationen:The International Journal of Advanced Manufacturing Technology vol. 55, no. 9-12 (Aug 2011), p. 1171
Huvudupphov: Manjeshwar, Praveen Kumar
Övriga upphov: Damodaran, Purushothaman, Krishnaswami Srihari
Utgiven:
Springer Nature B.V.
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 2262417608
003 UK-CbPIL
022 |a 0268-3768 
022 |a 1433-3015 
024 7 |a 10.1007/s00170-010-3150-0  |2 doi 
035 |a 2262417608 
045 2 |b d20110801  |b d20110831 
100 1 |a Manjeshwar, Praveen Kumar  |u Cisco Systems Inc, Austin, TX, USA 
245 1 |a Genetic algorithms for minimizing makespan in a flow shop with two capacitated batch processing machines 
260 |b Springer Nature B.V.  |c Aug 2011 
513 |a Journal Article 
520 3 |a This paper considers a flow shop with two batch processing machines. The processing times of the job and their sizes are given. The batch processing machines can process multiple jobs simultaneously in a batch as long as the total size of all the jobs in a batch does not exceed its capacity. When the jobs are grouped into batches, the processing time of the batch is defined by the longest processing job in the batch. Batch processing machines are expensive and a bottleneck. Consequently, the objective is to minimize the makespan (or maximize the machine utilization). The scheduling problem under study is NP-hard, hence, a genetic algorithm (GA) is proposed. The effectiveness (in terms of solution quality and run time) of the GA approach is compared with a simulated annealing approach, a heuristic, and a commercial solver which was used to solve a mixed-integer formulation of the problem. Experimental study indicates that the GA approach outperforms the other approaches by reporting better solution. 
653 |a Production scheduling 
653 |a Batch processing 
653 |a Genetic algorithms 
653 |a Simulated annealing 
653 |a Computer simulation 
653 |a Run time (computers) 
700 1 |a Damodaran, Purushothaman  |u Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, USA 
700 1 |a Krishnaswami Srihari  |u Department of Systems Science and Industrial Engineering, Binghamton University, Binghamton, NY, USA 
773 0 |t The International Journal of Advanced Manufacturing Technology  |g vol. 55, no. 9-12 (Aug 2011), p. 1171 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2262417608/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2262417608/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch