Gaussian process regression-based forecasting model of dam deformation

Guardado en:
Detalles Bibliográficos
Publicado en:Neural Computing & Applications vol. 31, no. 12 (Dec 2019), p. 8503
Autor principal: Lin, Chaoning
Otros Autores: Li, Tongchun, Chen, Siyu, Liu, Xiaoqing, Lin, Chuan, Liang, Siling
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2268837021
003 UK-CbPIL
022 |a 0941-0643 
022 |a 1433-3058 
024 7 |a 10.1007/s00521-019-04375-7  |2 doi 
035 |a 2268837021 
045 2 |b d20191201  |b d20191231 
100 1 |a Lin, Chaoning  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu, China 
245 1 |a Gaussian process regression-based forecasting model of dam deformation 
260 |b Springer Nature B.V.  |c Dec 2019 
513 |a Journal Article 
520 3 |a The displacement at various measurement points is a critical indicator that can intuitively reflect the operational properties of a dam. It is important to analyse displacement monitoring data in a timely manner and make reliable predictions of dam safety. This paper proposes a GPR-based model for dam displacement forecasting. The input variables of the monitoring model consider hydraulic factors, thermal factors and irreversible factors, and the output variables are the observed displacements of the dam. An example analysis based on the proposed method is performed on a prototype gravity dam, and the performance of different simple/combined covariance functions is investigated to obtain the optimal choice. Compared to multiple linear regression, radial basis function network (RBFN) and support vector machine (SVM) methods, the results indicate that the GPR-based model with a combined covariance function significantly improves the prediction accuracy. The proposed model can effectively overcome the over-learning and poor robustness issues of approaches such as RBFN and SVM. In addition, the GPR-based forecasting model has the advantages of simplicity in the training process and the capacity to provide a probabilistic output. 
653 |a Dams 
653 |a Model accuracy 
653 |a Regression analysis 
653 |a Radial basis function 
653 |a Support vector machines 
653 |a Regression models 
653 |a Covariance 
653 |a Gravity dams 
653 |a Displacement 
653 |a Gaussian process 
653 |a Dam safety 
653 |a Monitoring 
653 |a Statistical analysis 
653 |a Forecasting 
653 |a Economic 
700 1 |a Li, Tongchun  |u College of Agricultural Engineering, Hohai University, Nanjing, Jiangsu, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, Jiangsu, China 
700 1 |a Chen, Siyu  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu, China; College of Agricultural Engineering, Hohai University, Nanjing, Jiangsu, China 
700 1 |a Liu, Xiaoqing  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu, China 
700 1 |a Lin, Chuan  |u College of Civil Engineering, Fuzhou University, Fuzhou, Fujian, China 
700 1 |a Liang, Siling  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu, China 
773 0 |t Neural Computing & Applications  |g vol. 31, no. 12 (Dec 2019), p. 8503 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2268837021/abstract/embedded/XH47U3ESDU1O47K5?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2268837021/fulltextPDF/embedded/XH47U3ESDU1O47K5?source=fedsrch