Using Monte Carlo Simulation to Determine Combination Vaccine Price Distributions for Childhood Diseases

Spremljeno u:
Bibliografski detalji
Izdano u:Health Care Management Science vol. 5, no. 2 (Apr 2002), p. 135
Glavni autor: Jacobson, Sheldon H
Daljnji autori: Sewell, Edward C
Izdano:
Springer Nature B.V.
Teme:
Online pristup:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 227983645
003 UK-CbPIL
022 |a 1386-9620 
022 |a 1572-9389 
035 |a 227983645 
045 2 |b d20020401  |b d20020430 
084 |a 11993748 
084 |a 53331  |2 nlm 
100 1 |a Jacobson, Sheldon H 
245 1 |a Using Monte Carlo Simulation to Determine Combination Vaccine Price Distributions for Childhood Diseases 
260 |b Springer Nature B.V.  |c Apr 2002 
513 |a Journal Article 
520 3 |a The Recommended Childhood Immunization Schedule provides guidelines that allow pediatricians to administer childhood vaccines in an efficient and effective manner. Research by vaccine manufacturers has resulted in the development of new vaccines that protect against a growing number of diseases. This has created a dilemma for how to insert such new vaccines into an already crowded immunization schedule, and prompted vaccine manufacturers to develop vaccine products that combine several individual vaccines into a single injection. Such combination vaccines permit new vaccines to be inserted into the immunization schedule without requiring children to be exposed to an unacceptable number of injections during a single clinic visit. Given this advantage, combination vaccines merit an economic premium. The purpose of this paper is to describe how Monte Carlo simulation can be used to assess and quantify this premium by studying four combination vaccines that may become available for distribution within the United States. Each combination vaccine is added to twelve licensed vaccine products for six childhood diseases (diphtheria, tetanus, pertussis, haemophilus influenzae type B, hepatitis B, and polio). Monte Carlo simulation with an integer programming model is used to determine the (maximal) inclusion price distribution of four combination vaccines, by randomizing the cost of an injection. The results of this study suggest that combination vaccines warrant price premiums based on the cost assigned to administering an injection, and that further developments and innovations in this area by vaccine manufacturers may provide significant economic and societal benefits. 
650 2 2 |a Child 
650 2 2 |a Computer Simulation 
650 1 2 |a Drug Costs  |x statistics & numerical data 
650 2 2 |a Humans 
650 1 2 |a Immunization Programs  |x economics 
650 1 2 |a Immunization Schedule 
650 1 2 |a Models, Statistical 
650 1 2 |a Monte Carlo Method 
650 2 2 |a Pediatrics  |x standards 
650 2 2 |a Practice Guidelines as Topic 
650 2 2 |a United States 
650 1 2 |a Vaccines, Combined  |x economics 
650 2 2 |a Vaccines, Combined  |x supply & distribution 
653 |a Immunization 
653 |a Vaccines 
653 |a Monte Carlo simulation 
653 |a Integer programming 
653 |a Cost control 
653 |a Parents & parenting 
653 |a Tetanus 
653 |a Childrens health 
653 |a Disease 
653 |a Diphtheria 
653 |a Health care expenditures 
653 |a Prices 
653 |a Whooping cough 
653 |a Poliomyelitis 
653 |a Injections 
653 |a Probability distribution 
653 |a Hepatitis B 
653 |a Health economics 
653 |a Health care 
653 |a Hepatitis 
700 1 |a Sewell, Edward C 
773 0 |t Health Care Management Science  |g vol. 5, no. 2 (Apr 2002), p. 135 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/227983645/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/227983645/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/227983645/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch