Research on radar signal recognition based on automatic machine learning

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Neural Computing & Applications vol. 32, no. 7 (Apr 2020), p. 1959
Váldodahkki: Li, Peng
Almmustuhtton:
Springer Nature B.V.
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 2288317243
003 UK-CbPIL
022 |a 0941-0643 
022 |a 1433-3058 
024 7 |a 10.1007/s00521-019-04494-1  |2 doi 
035 |a 2288317243 
045 2 |b d20200401  |b d20200430 
100 1 |a Li, Peng  |u Chongqing University, College of Microelectronics and Communication Engineering, Chongqing, China (GRID:grid.190737.b) (ISNI:0000 0001 0154 0904); Chongqing University of Arts and Sciences, School of Electronic and Electrical Engineering, Chongqing, China (GRID:grid.449955.0) (ISNI:0000 0004 1762 504X) 
245 1 |a Research on radar signal recognition based on automatic machine learning 
260 |b Springer Nature B.V.  |c Apr 2020 
513 |a Journal Article 
520 3 |a With the advancement of machine learning and radar technology, machine learning is becoming more and more widely used in the field of radar. Radar scanning, signal acquisition and processing, one-dimensional range image, radar SAR, ISAR image recognition, radar tracking and guidance are all integrated into machine learning technology, but machine learning technology relies heavily on human machine learning experts for radar signal recognition. In order to realize the automation of radar signal recognition by machine learning, this paper proposes an automatic machine learning AUTO-SKLEARN system and applies it to radar radiation source signals. Identification: Firstly, this paper briefly introduces the classification of traditional machine learning algorithms and the types of algorithms specifically included in each type of algorithm. On this basis, the machine learning Bayesian algorithm is introduced. Secondly, the automatic machine learning AUTO based on Bayesian algorithm is proposed. -SKLEARN system, elaborates the process of AUTO-SKLEARN system in solving automatic selection algorithm and hyperparameter optimization, including meta-learning and its program implementation and automatic model integration construction. Finally, this paper introduces the process of automatic machine learning applied to radar emitter signal recognition. Through data simulation and experiment, the effect of traditional machine learning k-means algorithm and automatic machine learning AUTO-SKLEARN system in radar signal recognition is compared, which shows that automatic machine learning is feasible for radar signal recognition. The automatic machine learning AUTO-SKLEARN system can significantly improve the accuracy of the radar emitter signal recognition process, and the scheme is more reliable in signal recognition stability. 
653 |a Machine learning 
653 |a Military communications 
653 |a Signal processing 
653 |a Bayesian analysis 
653 |a Radar tracking 
653 |a Automation 
653 |a Artificial intelligence 
653 |a Data simulation 
653 |a Synthetic aperture radar 
653 |a Optimization 
653 |a Algorithms 
653 |a Image acquisition 
653 |a Radar imaging 
653 |a Object recognition 
653 |a Radar scanning 
653 |a Computer simulation 
653 |a Emitters 
773 0 |t Neural Computing & Applications  |g vol. 32, no. 7 (Apr 2020), p. 1959 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2288317243/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2288317243/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch