Tracking and Simulating Pedestrian Movements at Intersections Using Unmanned Aerial Vehicles

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote Sensing vol. 11, no. 8 (Feb 2019), p. n/a
1. Verfasser: Zhu, Jiasong
Weitere Verfasser: Chen, Siyuan, Tu, Wei, Sun, Ke
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 2304028424
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs11080925  |2 doi 
035 |a 2304028424 
045 2 |b d20190201  |b d20190228 
084 |a 231556  |2 nlm 
100 1 |a Zhu, Jiasong 
245 1 |a Tracking and Simulating Pedestrian Movements at Intersections Using Unmanned Aerial Vehicles 
260 |b MDPI AG  |c Feb 2019 
513 |a Journal Article 
520 3 |a For a city to be livable and walkable is the ultimate goal of future cities. However, conflicts among pedestrians, vehicles, and cyclists at traffic intersections are becoming severe in high-density urban transportation areas, especially in China. Correspondingly, the transit time at intersections is becoming prolonged, and pedestrian safety is becoming endangered. Simulating pedestrian movements at complex traffic intersections is necessary to optimize the traffic organization. We propose an unmanned aerial vehicle (UAV)-based method for tracking and simulating pedestrian movements at intersections. Specifically, high-resolution videos acquired by a UAV are used to recognize and position moving targets, including pedestrians, cyclists, and vehicles, using the convolutional neural network. An improved social force-based motion model is proposed, considering the conflicts among pedestrians, cyclists, and vehicles. In addition, maximum likelihood estimation is performed to calibrate an improved social force model. UAV videos of intersections in Shenzhen are analyzed to demonstrate the performance of the presented approach. The results demonstrate that the proposed social force-based motion model can effectively simulate the movement of pedestrians and cyclists at road intersections. The presented approach provides an alternative method to track and simulate pedestrian movements, thus benefitting the organization of pedestrian flow and traffic signals controlling the intersections. 
651 4 |a France 
651 4 |a China 
653 |a International conferences 
653 |a Pedestrians 
653 |a Artificial neural networks 
653 |a Roads & highways 
653 |a Unmanned aerial vehicles 
653 |a Tracking 
653 |a Distance learning 
653 |a Traffic congestion 
653 |a Traffic conflicts 
653 |a Pedestrian traffic flow 
653 |a Computer simulation 
653 |a Pattern recognition 
653 |a Vehicles 
653 |a Bicycling 
653 |a Global positioning systems--GPS 
653 |a Traffic flow 
653 |a Pedestrian safety 
653 |a Social organization 
653 |a Traffic signals 
653 |a Traffic accidents & safety 
653 |a Target recognition 
653 |a Neural networks 
653 |a Moving targets 
653 |a Maximum likelihood estimation 
653 |a Methods 
653 |a Transit time 
653 |a Algorithms 
653 |a Movement 
653 |a Informatics 
653 |a Traffic control 
653 |a Urban transportation 
653 |a Internet of Things 
653 |a Traffic intersections 
653 |a Laboratories 
700 1 |a Chen, Siyuan 
700 1 |a Tu, Wei 
700 1 |a Sun, Ke 
773 0 |t Remote Sensing  |g vol. 11, no. 8 (Feb 2019), p. n/a 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2304028424/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2304028424/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2304028424/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch