A generic imperative language for polynomial time

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:arXiv.org (Feb 19, 2020), p. n/a
Prif Awdur: Leivant, Daniel
Cyhoeddwyd:
Cornell University Library, arXiv.org
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full text outside of ProQuest
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 2313804748
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2313804748 
045 0 |b d20200219 
100 1 |a Leivant, Daniel 
245 1 |a A generic imperative language for polynomial time 
260 |b Cornell University Library, arXiv.org  |c Feb 19, 2020 
513 |a Working Paper 
520 3 |a The ramification method in Implicit Computational Complexity has been associated with functional programming, but adapting it to generic imperative programming is highly desirable, given the wider algorithmic applicability of imperative programming. We introduce a new approach to ramification which, among other benefits, adapts readily to fully general imperative programming. The novelty is in ramifying finite second-order objects, namely finite structures, rather than ramifying elements of free algebras. In so doing we bridge between Implicit Complexity's type theoretic characterizations of feasibility, and the data-flow approach of Static Analysis. 
653 |a Algorithms 
653 |a Canonical forms 
653 |a Complexity 
653 |a Imperative programming 
653 |a Programming languages 
653 |a Polynomials 
653 |a Recursive methods 
773 0 |t arXiv.org  |g (Feb 19, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2313804748/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1911.04026