Predicting Library of Congress classifications from Library of Congress subject headings

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of the American Society for Information Science and Technology vol. 55, no. 3 (Feb 1, 2004), p. 214
Autor principal: Frank, Eibe
Otros Autores: Paynter, Gordon W
Publicado:
Wiley Periodicals Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This paper addresses the problem of automatically assigning a Library of Congress Classification (LCC) to a work given its set of Library of Congress Subject Headings (LCSH). LCCs are organized in a tree: The root node of this hierarchy comprises all possible topics, and leaf nodes correspond to the most specialized topic areas defined. We describe a procedure that, given a resource identified by its LCSH, automatically places that resource in the LCC hierarchy. The procedure uses machine learning techniques and training data from a large library catalog to learn a model that maps from sets of LCSH to classifications from the LCC tree. We present empirical results for our technique showing its accuracy on an independent collection of 50,000 LCSH/LCC pairs. [PUBLICATION ABSTRACT]
ISSN:1532-2882
1532-2890
2330-1635
2330-1643
0096-946X
0002-8231
DOI:10.1002/asi.10360
Fuente:ABI/INFORM Global