Computational storage: an efficient and scalable platform for big data and HPC applications

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Journal of Big Data vol. 6, no. 1 (Nov 2019), p. 1
Kaituhi matua: Torabzadehkashi, Mahdi
Ētahi atu kaituhi: Rezaei, Siavash, HeydariGorji, Ali, Bobarshad, Hosein, Alves, Vladimir, Bagherzadeh, Nader
I whakaputaina:
Springer Nature B.V.
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 2315414097
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-019-0265-5  |2 doi 
035 |a 2315414097 
045 2 |b d20191101  |b d20191130 
100 1 |a Torabzadehkashi, Mahdi  |u University of California, Irvine (UCI), Irvine, USA; NGD Systems, Inc., Irvine, USA 
245 1 |a Computational storage: an efficient and scalable platform for big data and HPC applications 
260 |b Springer Nature B.V.  |c Nov 2019 
513 |a Journal Article 
520 3 |a In the era of big data applications, the demand for more sophisticated data centers and high-performance data processing mechanisms is increasing drastically. Data are originally stored in storage systems. To process data, application servers need to fetch them from storage devices, which imposes the cost of moving data to the system. This cost has a direct relation with the distance of processing engines from the data. This is the key motivation for the emergence of distributed processing platforms such as Hadoop, which move process closer to data. Computational storage devices (CSDs) push the “move process to data” paradigm to its ultimate boundaries by deploying embedded processing engines inside storage devices to process data. In this paper, we introduce Catalina, an efficient and flexible computational storage platform, that provides a seamless environment to process data in-place. Catalina is the first CSD equipped with a dedicated application processor running a full-fledged operating system that provides filesystem-level data access for the applications. Thus, a vast spectrum of applications can be ported for running on Catalina CSDs. Due to these unique features, to the best of our knowledge, Catalina CSD is the only in-storage processing platform that can be seamlessly deployed in clusters to run distributed applications such as Hadoop MapReduce and HPC applications in-place without any modifications on the underlying distributed processing framework. For the proof of concept, we build a fully functional Catalina prototype and a CSD-equipped platform using 16 Catalina CSDs to run Intel HiBench Hadoop and HPC benchmarks to investigate the benefits of deploying Catalina CSDs in the distributed processing environments. The experimental results show up to 2.2× improvement in performance and 4.3× reduction in energy consumption, respectively, for running Hadoop MapReduce benchmarks. Additionally, thanks to the Neon SIMD engines, the performance and energy efficiency of DFT algorithms are improved up to 5.4× and 8.9×, respectively. 
653 |a Data centers 
653 |a Data management 
653 |a Data processing 
653 |a Storage systems 
653 |a Application servers 
653 |a Computer storage devices 
653 |a Microprocessors 
653 |a Electronic devices 
653 |a Computational efficiency 
653 |a Algorithms 
653 |a Engines 
653 |a Neon 
653 |a Energy consumption 
653 |a Servers 
653 |a Benchmarks 
653 |a Distributed processing 
653 |a Big Data 
653 |a High performance computing 
653 |a Energy efficiency 
653 |a Application 
653 |a Prototypes 
653 |a Storage 
653 |a Motivation 
700 1 |a Rezaei, Siavash  |u University of California, Irvine (UCI), Irvine, USA; NGD Systems, Inc., Irvine, USA 
700 1 |a HeydariGorji, Ali  |u University of California, Irvine (UCI), Irvine, USA; NGD Systems, Inc., Irvine, USA 
700 1 |a Bobarshad, Hosein  |u NGD Systems, Inc., Irvine, USA 
700 1 |a Alves, Vladimir  |u NGD Systems, Inc., Irvine, USA 
700 1 |a Bagherzadeh, Nader  |u University of California, Irvine (UCI), Irvine, USA 
773 0 |t Journal of Big Data  |g vol. 6, no. 1 (Nov 2019), p. 1 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2315414097/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2315414097/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch