An Improved DA-PSO Optimization Approach for Unit Commitment Problem

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Energies vol. 12, no. 12 (Feb 2019), p. n/a
Egile nagusia: Khunkitti, Sirote
Beste egile batzuk: Watson, Neville R, Chatthaworn, Rongrit, Premrudeepreechacharn, Suttichai, Siritaratiwat, Apirat
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 2316880947
003 UK-CbPIL
022 |a 1996-1073 
024 7 |a 10.3390/en12122335  |2 doi 
035 |a 2316880947 
045 2 |b d20190201  |b d20190228 
084 |a 231459  |2 nlm 
100 1 |a Khunkitti, Sirote 
245 1 |a An Improved DA-PSO Optimization Approach for Unit Commitment Problem 
260 |b MDPI AG  |c Feb 2019 
513 |a Journal Article 
520 3 |a Solving the Unit Commitment problem is an important step in optimally dispatching the available generation and involves two stages—deciding which generators to commit, and then deciding their power output (economic dispatch). The Unit Commitment problem is a mixed-integer combinational optimization problem that traditional optimization techniques struggle to solve, and metaheuristic techniques are better suited. Dragonfly algorithm (DA) and particle swarm optimization (PSO) are two such metaheuristic techniques, and recently a hybrid (DA-PSO), to make use of the best features of both, has been proposed. The original DA-PSO optimization is unable to solve the Unit Commitment problem because this is a mixed-integer optimization problem. However, this paper proposes a new and improved DA-PSO optimization (referred to as iDA-PSO) for solving the unit commitment and economic dispatch problems. The iDA-PSO employs a sigmoid function to find the optimal on/off status of units, which is the mixed-integer part of obtaining the Unit Commitment problem. To verify the effectiveness of the iDA-PSO approach, it was tested on four different-sized systems (5-unit, 6-unit, 10-unit, and 26-unit systems). The unit commitment, generation schedule, total generation cost, and time were compared with those obtained by other algorithms in the literature. The simulation results show iDA-PSO is a promising technique and is superior to many other algorithms in the literature. 
651 4 |a Thailand 
651 4 |a United States--US 
653 |a International conferences 
653 |a Optimization techniques 
653 |a Energy 
653 |a Electrical engineering 
653 |a Scheduling 
653 |a Genetic algorithms 
653 |a Cybernetics 
653 |a Computer engineering 
653 |a Optimization algorithms 
700 1 |a Watson, Neville R 
700 1 |a Chatthaworn, Rongrit 
700 1 |a Premrudeepreechacharn, Suttichai 
700 1 |a Siritaratiwat, Apirat 
773 0 |t Energies  |g vol. 12, no. 12 (Feb 2019), p. n/a 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2316880947/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2316880947/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2316880947/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch